

諸特性データ

Rev.1.0 00

© ABLIC Inc., 2023

S-8473シリーズ、S-8474シリーズはワイヤレス給電ICです。

S-8473シリーズは受電制御IC (受電側)、S-8474シリーズは給電制御IC (給電側) です。

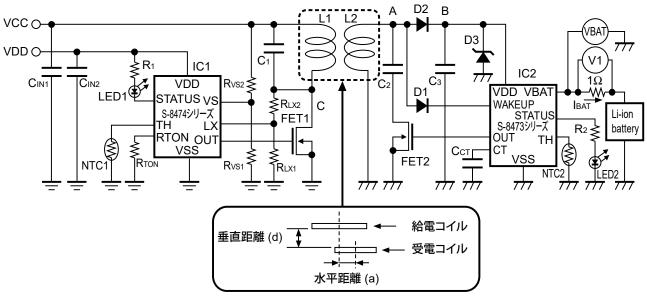
このアプリケーションノートは、S-8473シリーズとS-8474シリーズを組み合わせた動作説明、諸特性データを記載した技術資料です。

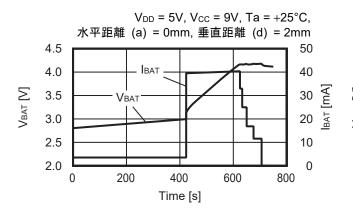
製品の詳細、仕様についてはデータシートにてご確認ください。

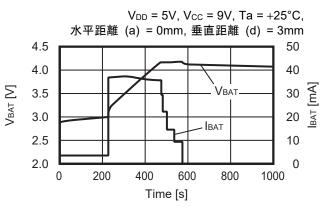
- 注意 1. S-8473シリーズ、S-8474シリーズを用いたワイヤレス給電装置は、およそ88kHz ~ 106kHzのLC共振周波数で動作するように最適化されています。LC共振周波数が88kHz ~ 106kHzの範囲内で、受電制御ICを検出する回路が動作し、給電制御ICも正常に動作します。使用するコイル (L) とコンデンサ (C) の定数を変更するとLC共振周波数が変化しますので、LC共振周波数を必ず88kHz ~ 106kHzの範囲内にしてください。
 - 2. S-8473シリーズ、S-8474シリーズを用いたワイヤレス給電装置では、受電側コイルと給電側コイルに極性があります。本アプリケーションノートの記載内容にしたがって、受電側コイルと給電側コイルを組み合わせて使用してください。

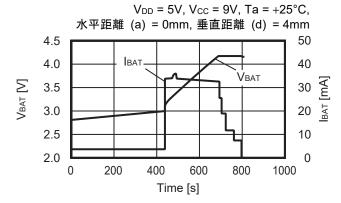
3. 諸特性データ

3.1 評価測定回路



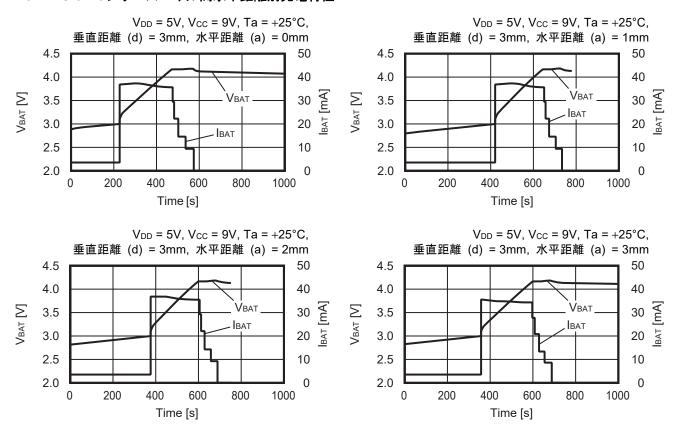

図26 評価測定回路図


3.2 外付け部品一覧表


表2

部品名	記号	部品名称	メーカ	備考
コンデンサ	C _{IN1}	GRM31CB31C226ME15	株式会社村田製作所	22μF, 16V
	C _{IN2}	GRM31CB31E106KA75	株式会社村田製作所	10μF, 25V
	C ₁	GRM31C2C1H104JA01L	株式会社村田製作所	50V, 0.10μF±5%, CH(JIS)
	C ₂	GRM188B31H104KA92	株式会社村田製作所	0.1μF, 50V, セラミックコンデンサ
	C ₃	GRM188R61A226ME15	株式会社村田製作所	22µF, 10V, 2個, S-8473シリーズ
	Сст	GRM188R71H472KA01	株式会社村田製作所	4.7nF, 25V
ダイオード	D1	RB751SM-40	ローム株式会社	SBD, C _t = 2pF
	D2	RB520SM-30	ローム株式会社	SBD
	D3	SZMM3Z6V2T1G	オン・セミコンダクター	Zener, DZ6.2V, SOD-323
	LED1, LED2	BR1111C	スタンレー電気株式会社	LED赤, 1608
インダクタ	L1	T6-0221-120L	後藤電子株式会社	21μH, 給電側コイル
	L2	R4-0426-20S	後藤電子株式会社	26μH, 受電側コイル (33mA)
サーミスタ	NTC1, NTC2	NCP18WF104J03	株式会社村田製作所	100kΩ, B定数 = 4250K
トランジスタ	FET1	NDT3055	フェアチャイルド セミコンダクター	Nch MOSFET, V _{DSS} = 60V, R _{DS(ON)} 0.1Ω @ V _{GS} = 10V
	FET2	MCH3474	オン・セミコンダクター	Nch MOSFET, V _{DSS} = 30V
抵抗器	R _{TON}	MCR03	ローム株式会社	1.1ΜΩ
	Rvs1, RLx1	MCR03	ローム株式会社	12kΩ
	Rvs2, RLx2	MCR03	ローム株式会社	82kΩ
	R ₁ , R ₂	MCR03	ローム株式会社	1kΩ
IC	IC1	S-8474シリーズ	エイブリック株式会社	ワイヤレス給電 給電制御IC
	IC2	S-8473シリーズ	エイブリック株式会社	ワイヤレス給電 充電機能付き 受電制御IC、充電電流33mA

3.3 S-8473シリーズコイル間垂直距離別充電特性



- **備考1**. 垂直距離、水平距離については、"**図26 評価測定回路図**" を参照してください。
 - 2. 電池の代用として、電気二重層コンデンサ (静電容量値 = 8F) を使用しています。

3.4 S-8473シリーズコイル間水平距離別充電特性

備考1. 垂直距離、水平距離については、"**図26 評価測定回路図**" を参照してください。

2. 電池の代用として、電気二重層コンデンサ (静電容量値 = 8F) を使用しています。

9. 基板設計上の留意事項

- ・ 基板配線時、S-8473シリーズとS-8474シリーズのデータシートの記載通り、一点アースとなるようにしてください。
- ・ 過熱保護のため、TH端子には必ずNTCサーミスタを接続してご使用ください。
- **図47**のVCCには1kHz ~ 110kHz (LC共振周波数) の周波数成分のゆれが発生するような電源を使用しないでください。 誤動作を引き起こす可能性があります。
- 図47のVDDには、誤動作防止のため、周波数成分のゆれが発生するような電源を使用しないでください。
- 図47の基板を設計する際、下記の理由でRTON端子、VS端子、TH端子のそばには配線を通さないようにしてください。
 抵抗R_{TON}は可能な限りRTON端子に近づけてレイアウトしてください。
 - (1) コイルL1と共振コンデンサ (C1) により、C点では大きな電圧変動が生じる。
 - (2) RTON端子、VS端子、TH端子はインピーダンスが高いため、外来信号の影響を受けやすい。 RTON端子 GND間に C_{RTON} (約100pF ~ 1000pF)、VS端子 GND間に C_{VS} (約100pF ~ 1000pF)、TH端子 GND間に C_{NTC} (約100pF ~ 1000pF) を接続することにより、外来信号の影響を軽減することができます。

特にNTCサーミスタでコイルの温度を検出する場合は、コイル信号の影響を受け、検出温度が高温側にシフトすることがあります。TH端子 - GND間にCntcを接続することを推奨します。

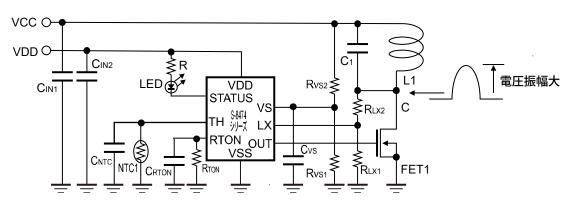


図47

10. 注意事項

- ・ 本資料に掲載のアプリケーション例は、弊社ICを使用した代表的な応用例を説明したものです。 ご使用の際は、十分な評価を行ってください。
- 本資料に掲載の応用回路を量産設計に用いる場合には、外付け部品の偏差およびその温度特性に注意してください。また、掲載回路に関する特許については、弊社ではその責任を負いかねます。
- ・ 弊社ICを使用して製品を作る場合には、その製品での当ICの使い方や製品の仕様、出荷先の国などによって当ICを 含めた製品が特許に抵触した場合、その責任は負いかねます。

11. 関連資料

S-8473シリーズとS-8474シリーズの詳細については、下記のデータシートを参照してください。

S-8473シリーズ データシート S-8474シリーズ データシート

このアプリケーションノートおよびデータシートの内容は、予告なく変更することがあります。 最新版については、販売代理店までお問い合わせください。