

S-UM5588

www.ablic.com

OCTAL PROGRAMMABLE 5-LEVEL HIGH-VOLTAGE ULTRASOUND TRANSMIT BEAMFORMER

© ABLIC Inc., 2021 Rev.1.0_00

S-UM5588 is a Octal programmable 5-level high-voltage ultrasound transmit beam-former.

The S-UM5588 comprises control logic, waveform memory, delay calculator, level translators, gate drive buffers with floating voltage regulators, high-voltage, high-current MOSFETs, and active T/R switches.

■ Functions

• Octal programmable 5-level transmit beam-former with active T/R-switch

■ Features

- 0 to ±100V output voltage
- ±2A source and sink current for the 1st and 2nd high-voltage pulses (V_{PP}1/V_{NN}1, V_{PP}2/V_{NN}2)
- 2-mode output current control for the 2nd high-voltage rail
- ±1A source and sink peak current for active ground clamp
- 250Ω active ground clamp without blocking diode for anti-leakage
- 20MHz output frequency at ±60V output, 220pF load
- Symmetrical positive and negative pulse waveforms for low 2nd order harmonic distortion
- 1.8V to 3.3V LVCMOS logic interface
- Waveform memory and registers with 100MHz Write / 50MHz Read SPI
- 0.2µs to 41µs common delay time range from TRIG signal
- 0 to 1.275µs channel-to-channel delay time range
- 5ns channel-to-channel delay time resolution with dual-edge 100MHz LVDS/LVCMOS clock
- Minimum 10ns pulse width with 5ns time resolution with dual-edge 100MHz LVDS/LVCMOS clock
- 15Ω active T/R switch
- Noise-cut diodes at each high-voltage output
- High-voltage clamp diodes between each high-voltage output and power rails
- Automatic thermal protection with indicator
- Power-up/down reset function for free power sequencing and for fail-safe in abrupt power drop
- Latch-up free, low crosstalk between channels by SOI CMOS technology
- QFN-68(1010)B: 68-lead 10×10mm QFN package (RoHS compliant)

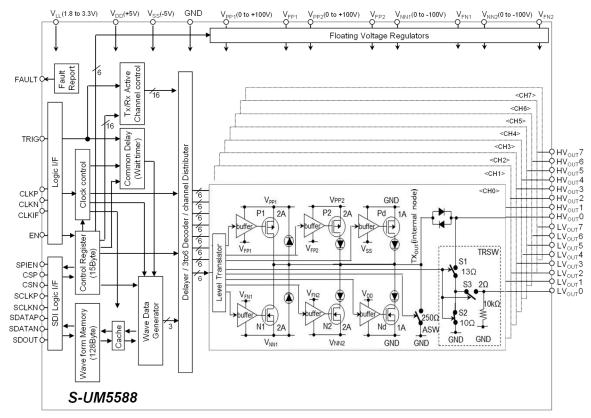


Figure 1 Block Diagram ABLIC Inc.

■ Absolute Maximum Ratings

T_A=25°C unless otherwise specified.

Table 1 Absolute Maximum Ratings

No.	Items	Symbol	Value	Units	Condition
1	Logic supply voltage	V _{LL}	-0.4 to +7	V	
2	Positive supply voltage	V _{DD}	-0.4 to +7	V	
3	Negative supply voltage	Vss	-7 to +0.4	V	
4	Positive high-voltage supplies	V _{PP1} , V _{PP2}	-0.5 to +105	V	
5	Negative high-voltage supplies	V _{NN1} ,V _{NN2}	-105 to +0.5	V	
6	High-voltage outputs (x=0 to 7)	HV _{оит} х	-105 to +105	V	
7	Low-voltage outputs (x=0 to 7)	LV _{OUT} X	-1 to +1	V	
8	Logic output voltage	SDOUT, FAULT	-0.4 to +7	V	
9	Logic input voltages	EN, CLKIF, CLKP, CLKN, TRIG, SPIEN, CSP, CSN, SCLKP, SCLKN, SDATAP, SDATAN	-0.4 to +7	>	
10	Operating junction temperature	T _{Jop}	-20 to +125	°C	
11	Storage temperature	T _{STG}	-55 to +150	°C	
12	Maximum power dissipation	P _{Dmax}	4	W	

Remark Stresses beyond the absolute maximum ratings may cause permanent damage to the product.

■ Operating Supply Voltages and Logic Inputs

1. Operating supply voltage and temperature

Table 2 Operating Supply Voltage and Temperature

No.	Items	Symbol	Min.	Тур.	Max.	Units	Condition
1	Logic supply voltage	V _{LL}	1.71	1.8 to 3.3	3.6	>	
2	Positive supply voltage	V_{DD}	4.75	5	5.25	>	
3	Negative supply voltage	Vss	-5.25	-5	-4.75	>	
4	Positive high-voltage supplies	V _{PP1} , V _{PP2}	0	-	100	V	
5	Negative high-voltage supplies	V _{NN1} , V _{NN2}	-100	-	0	V	
6	IC substrate voltage *1	V _{SUB}	_	0	_	V	
7	V _{PP} _, V _{NN} _ slew rate	SR _{MAX}	-	_	25	V/ms	
8	Operating free-air Temperature	Ta	0	_	75	°C	

^{*1.} The package exposed pad internally connected to the chip substrate must be soldered to the ground.

2. Logic inputs and outputs

2.1 LVDS differential logic inputs

Table 3 CLKP/CLKN, CSP/CSN, SCLKP/SCLKN, SDATAP/SDATAN

No.	Items	Symbol	Min.	Тур.	Max.	Units	Condition
1	High-level input voltage	V _{IH}	1.265	ı	ĺ	V	VIHCMR(Typ)+VDIFF(Min)/2
2	Low-level input voltage	VIL	1	ı	1.135	V	VIHCMR(Typ)-VDIFF(Min)/2
3	Differential input voltage range	V _{DIFF(range)}	0.13	0.35	0.49	±V	Same as voltage swing
4	Differential input voltage peak to peak swing	V _{DIFF(p-p)}	0.26	0.7	0.98	V _{pp}	Differential peak-to-peak absolute voltage swing
5	Input voltage common mode range	VIHCMR	0.84	1.2	1.56	V	
6	High-level input current	lıн	_	-	5.8	mA	
7	Low-level input current	lı∟	-	ı	5.8	mA	
8	Input rise/fall time	tr, tf	-	1	600	ps	20% to 80% of VDIFF
	Input clock frequency (Tx)	fclk	-	1	100	MHz	CLKP/CLKN, SCLKP/SCLKN
9	Input alook froguency (CDI)	f	-	1	100	MHz	SCLKP/SCLKN (Write mode)
	Input clock frequency (SPI)	fsclk	_	_	50	MHz	SCLKP/SCLKN (Read mode)
10	Clock duty ovolo	Dclk	48	50	52	%	CLKP/CLKN
10	Clock duty cycle	Dsclk	45	50	55	%	SCLKP/SCLKN
11	CS setup time	tsu_cs	2.5	1	ı	ns	CS to SCLK rise
12	CS hold time	t _{HLD_CS}	2.5	1	ı	ns	CS to SCLK rise
			1043T _{SCLK}	ı	1	ns	Data write to memory
			1050Tsclk	ı	1	ns	Data read from memory
			75T _{SCLK}	ı	ı	ns	Data Write to 7Byte register
13	CS width	tw_cs	82T _{SCLK}	ı	1	ns	Data read from 7Byte register
			147Tsclk	ı	ı	ns	Data write to 16Byte register
			154Т sclк	-	-	ns	Data read from 16Byte register
			26Tsclk	1	1	ns	Data read of other register
14	SDATA setup time	tsu_sdata	2.5	1	ı	ns	SDATA to SCLK rise
15	SDATA hold time	thld_sdata	2.5	1	1	ns	SDATA to SCLK rise

Remark External termination Resister (100 Ω) is necessary for LVDS I/F differential inputs.

2.2 CMOS logic inputs & outputs

Table 4 CLKP/CLKN, CSP/CSN, SCLKP/SCLKN, SDATAP/SDATAN*3
EN, CLKIF, TRIG, SPIEN, SDOUT

No.	Items	Symbol	Min.	Тур.	Max.	Units	Condition
1	High-level logic input voltage	V _{IH}	$0.8V_{LL}$	ı	V _{LL}	٧	
2	Low-level logic input voltage	VIL	0	ı	0.2VLL	V	
3	Logic input capacitance	Cin	1	3	_	pF	
4	Logic input high current *1	Іін	-10	1	10	μΑ	
5	Logic input low current *2	I _{IL}	-10	1	10	μΑ	
6	Input rise/fall time	t_r , t_f	1	1	2.0	ns	10% to 90% of signal
7	TDIC fall to algebraic control times	4	1.5	1	_		LVDS clock
7	TRIG fall to clock rise setup time	LSU_TRFtoCKR	1.5	1	_	ns	CMOS clock
	TDIC fall to alook vise hold time	4	1.5	1	_		LVDS clock
8	TRIG fall to clock rise hold time	thld_trftockr	1.5	1	_	ns	CMOS clock
9	TRIG width	tw_trig	3T _{CLK}	1	_	ns	
10	High-level logic output voltage	Vон	0.8V _{LL}	1	V_{LL}	>	SDOUT
11	Low-level logic output voltage	Vol	0	1	0.2V _{LL}	>	SDOUT
12	Logic output off leak current	Ioffleak	-10	ı	10	μΑ	SDOUT Hi-Z output
			8	12	18	ns	V _{LL} =1.8V, 10pF load
13	SDOUT propagation delay	t _{D_SDOUT}	7	11	17	ns	V _{LL} =2.5V, 10pF load
			6	10	16	ns	V _{LL} =3.3V, 10pF load

^{*1.} CLKIF has 50 μ A leakage at V_{LL}=2.5V due to 50k Ω internal pull-down resistor.

2.3 Open drain output

Table 5 FAULT

No.	Items	Symbol	Min.	Тур.	Max.	Units	Condition
1	Pull-up voltage	Vpufault	ı	ı	V_{LL}	V	Connected to V _{LL} with R1
2	Output low voltage	Volfault	ı	ı	0.5	V	Active, V _{LL} =2.5V, R1=2.5kΩ
3	Output current	IFAULT	-	1.0	-	mA	V _{LL} =2.5V, R1=2.5kΩ
4	Off leak current	Ioffleak	-10	1	10	μΑ	Disabled (Hi-Z)

^{*2.} EN, SPIEN has $50\mu\text{A}$ leakage at V_{LL} =2.5V due to $50k\Omega$ internal pull-up resistor.

^{*3.} Differential CMOS or Single-ended CMOS is also available for CLKP/N, CSP/N, SCLKP/N and SDATAP/N. In case of single-ended CMOS, N-terminals (CLKN, CSPN, SCLKN and SDATAN) need to be connected to half of V_{LL} ($V_{LL}/2$).

2.4 Logic inputs timing chart

2.4.1 LVDS clock inputs

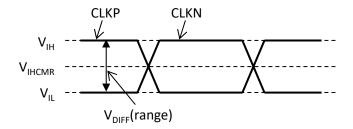


Figure 2 Differential Input Voltage Range (VDIFF(range))

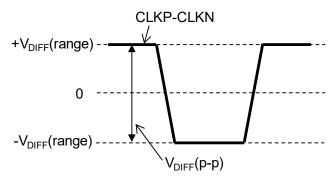


Figure 3 Differential Input Voltage Peak to Peak Swing (VDIFF(p-p))

2.4.2 TRIG and setup/hold time

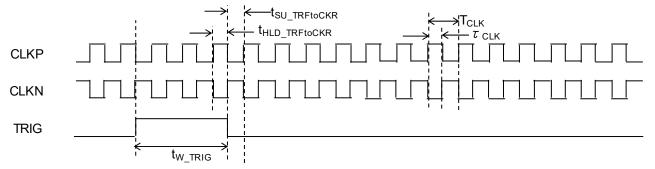


Figure 4

2.4.3 SPI inputs and setup/hold time

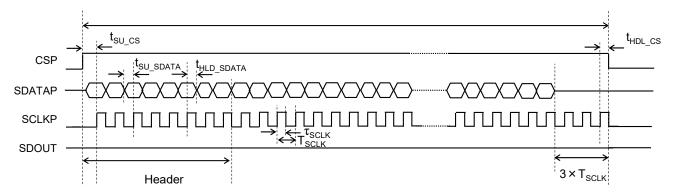


Figure 5 Write Data to Waveform Memory or Registers

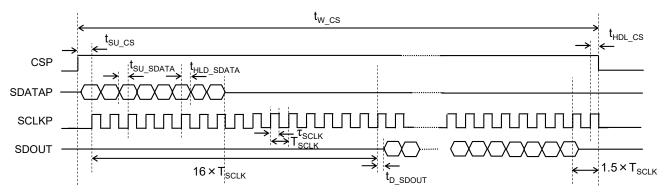


Figure 6 Read Data from Waveform Memory or Registers

2.4.4 Note on CSP rise timing

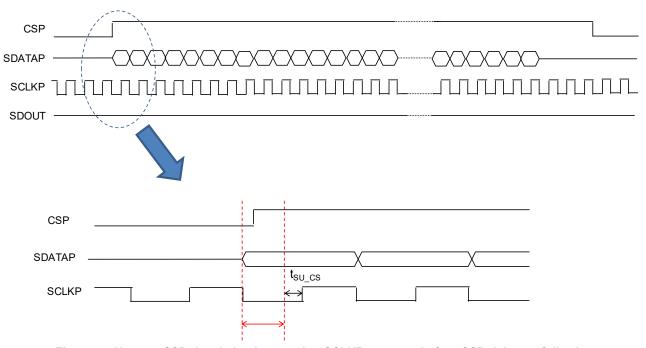


Figure 7 Note on CSP rise timing in case that SCLKP operates before CSP rising as following.

In case that SCLKP operates before CSP rising, CSP has to rise during SCLKP is "low" except for setup time "tsu_cs".

■ Typical Application Circuit

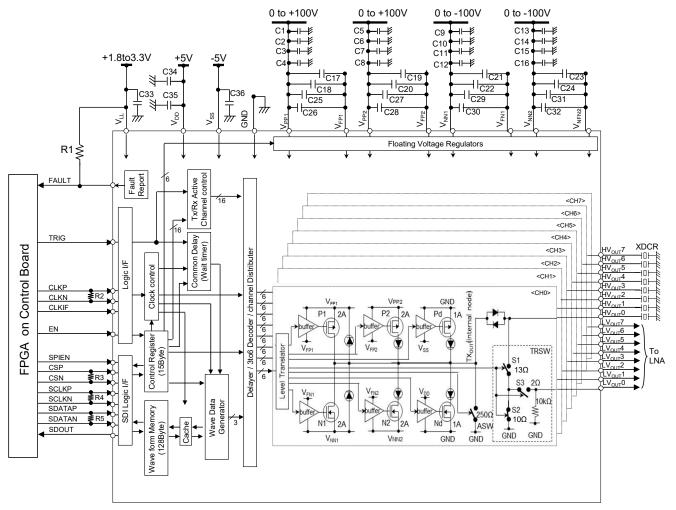


Figure 8 Typical Application Circuit

Remark C1 to C16: Ceramic capacitors of ≥200V 0.1µF to 1µF

C17 to C24: Ceramic capacitors of ≥16V 10µF C25 to C36: Ceramic capacitors of ≥16V 0.1µF

R1: 2.5kΩ

R2 to R5: 100Ω (for LVDS)

Note:

- 1. High-voltage power supply pins, VPP/VNN, can draw fast transient currents up to ±2.0A. Therefore, ceramic capacitors of ≥200V 0.1µF to 1µF (C1 to 16) should be connected as close to the pins as possible for bypassing purpose.
- 2. Ceramic capacitors of ≥16V 10µF (C17 to 24), and ≥16V 0.1µF (C25 to 36) should also be connected between high-voltage power supply pins and corresponding floating voltage pins VFP/VFN, and low-voltage power supply pins for bypassing purpose. Connect those as close to the pins as possible.
- 3. It is also important to minimize the trace length and to have enough trace width of those high voltage and floating voltage lines
- 4. The thermal tab on the bottom of the package must be soldered to the GND.
- 5. External 100Ω should be connected between differential LVDS inputs of SPI and Clock.

■ Electrical Characteristics

1. Operating supply currents

Table 6 Operating Supply Currents (1/2)

 $V_{\text{LL}}\text{=}2.5\text{V}, \ V_{\text{DD}}/V_{\text{SS}}\text{=}\pm5\text{V}, \ T_{\text{A}}\text{=}25^{\circ}\text{C}, \ CLKP/CLKN}\text{=}100\text{MHz}, \ HV_{\text{OUT}} \ \text{load}\text{=}220\text{pF}/\!/200\Omega, \ LV_{\text{OUT}} \ \text{load}\text{=}47\text{pF}/\!/200\Omega, \ unless otherwise specified.}$

No.		Items	Symbol		Spec		Units	Conditions
140.		1	Cyrribor	Min.	Тур.	Max.	Office	Conditions
1	VLL current	SPIEN=H	ILLQD	_	0.05	_	mA	
	VLE GUITOITE	SPIEN=L	ILLGD	_	0.1	_	mA	
2	V _{DD} current	SPIEN=H	IDDQD	_	5.5	_	mA	Quiescent current-1
	VDD Carrent	SPIEN=L		_	13.5		mA	EN=1(Disable)
3	Vss current		Issqd	_	1	_	mA	Current mode 1 (CC='1')
4	V _{PP1} current		I _{PP1QD}	_	0.1	_	mA	V _{PP1} /V _{NN1} =±100V
5	V _{PP2} current		I _{PP2QD}	_	0.1	_	mA	V _{PP2} /V _{NN2} =±100V
6	V _{NN1} current		I _{NN1QD}	_	0.1	_	mA	
7	V _{NN2} current	<u> </u>	I _{NN2QD}	_	0.1	_	mA	
8	V. ourront	SPIEN=H	l	_	0.1	_	mA	
0	V _{LL} current	SPIEN=L	ILLQE	_	0.15	-	mA	
		SPIEN=H,			10		A	
		CLKIF=H(CMOS)		ı	12	1	mA	
		SPIEN=H,			4.4		А	
	\/	CLKIF=L(LVDS)		ı	14	ı	mA	Quiescent current-2
9	V _{DD} current	SPIEN=L,	IDDQE		20		A	EN=0(Enable)
		CLKIF=H(CMOS)			20	-	mA	Current mode 1 (CC='1')
		SPIEN=L,			22		A	VPP1/VNN1=±100V
		CLKIF=L(LVDS)		_	22	_	mA	VPP2/VNN2=±100V
10	Vss current		Issqe	_	1	_	mA	
11	V _{PP1} current		I _{PP1QE}	_	0.3	_	mA	
12	V _{PP2} current		I _{PP2QE}	_	0.3	_	mA	
13	V _{NN1} current		I _{NN1QE}	_	0.3	_	mA	
14	V _{NN2} current		I _{NN2QE}	_	0.3	_	mA	
4.5	\/ aa.t	SPIEN=H		İ	0.1	ı	mA	
15	V _{LL} current	SPIEN=L	I _{LLPW}	_	0.15	_	mA	
		SPIEN=H,			45		A]
		CLKIF=H(CMOS)			15	-	mA	
		SPIEN=H,			17		nc ^	PW operating current
16	\/ ourront	CLKIF=L(LVDS)			17		mA	EN=0
10	V _{DD} current	SPIEN=L,	IDDPW		22		m A	Current mode 1 (CC='1')
		CLKIF=H(CMOS)		_	23	_	mA	8-channel active
		SPIEN=L,			25		mA	Bipolar 3-level 2-cycle f=5MHz, PRT=200µs
		CLKIF=L(LVDS)		_	25	_	IIIA	VPP1/VNN1=±60V
17	Vss current		Isspw	_	2	_	mA	VPP2/VNN2=±5V
18	V _{PP1} current		I _{PP1PW}	_	4	_	mA	V F F Z / V ININZ — ± O V
19	V _{PP2} current		I _{PP2PW}	-	0.3	-	mA	
20	V _{NN1} current		I _{NN1PW}	-	4	-	mA	
21	V _{NN2} current		I _{NN2PW}	_	0.3	_	mA	

Table 6 Operating Supply Currents (2/2)

 $\label{eq:VLL} V_{LL}\text{=}2.5\text{V}, V_{DD}/V_{SS}\text{=}\pm5\text{V}, T_{A}\text{=}25^{\circ}\text{C}, CLKP/CLKN}\text{=}100MHz, HV_{OUT}\ load\text{=}220pF//200\Omega, LV_{OUT}\ load\text{=}47pF//200\Omega \\ unless \ otherwise \ specified.$

No.		Items	Cymbol		Spec		Units	Conditions
INO.		items	Symbol	Min.	Тур.	Max.	Units	Conditions
16	VLL current	SPIEN=H	1	_	0.1	_	mA	
10	VLL current	SPIEN=L	ILLCW1	_	0.15	_	mA	
		SPIEN=H,			108		mA	
		CLKIF=H(CMOS)		_	100	_	IIIA	
		SPIEN=H,			110		mA	CW operating current-1
17	V _{DD} current	CLKIF=L(LVDS)	I _{DDCW1}	_	110	_	IIIA	EN=0, CKDIV[1:0]=10
' /	VDD Current	SPIEN=L,	IDDCW1		116		mA	Current mode 1 (CC='1') 8-channel active
		CLKIF=H(CMOS)			110	_	ША	Bipolar 3-level Continuous
		SPIEN=L,		_	118		mA	f=5MHz
		CLKIF=L(LVDS)			110		ША	V _{PP1} /V _{NN1} =±60V
18	Vss current		Isscw ₁	_	24	_	mA	VPP2/VNN2=±5V
19	V _{PP1} current		I _{PP1CW1}	_	0.3	_	mA	VII 27 VIVIV2 = 0 V
20	V _{PP2} current		I _{PP2CW1}	_	190	_	mA	
21	V _{NN1} current		I _{PP2CW1}	_	0.3	_	mA	
22	V _{NN2} current		I _{NN2CW1}	_	200	_	mA	
23	VLL current	SPIEN=H	lu aura	_	0.1	_	mA	
23	VLL Current	SPIEN=L	ILLCW2	_	0.15	_	mA	
		SPIEN=H,		_	105	_	mA	
		CLKIF=H(CMOS)		_	103	_	IIIA	
		SPIEN=H,			107		mA	CW operating current-2
24	V _{DD} current	CLKIF=L(LVDS)	IDDCW2		107		ША	EN=0, CKDIV[1:0]=10 Current mode 0 (CC='0')
24	VDD Current	SPIEN=L,	IDDCW2	_	113	_	mA	8-channel active
		CLKIF=H(CMOS)			113		ША	Bipolar 3-level Continuous
		SPIEN=L,		_	115	_	mA	f=5MHz
		CLKIF=L(LVDS)					1117 (V _{PP1} /V _{NN1} =±60V
25	Vss current		Isscw ₂	_	21	_	mA	VPP2/VNN2=±5V
26	V _{PP1} current		IPP1CW2	_	0.24	_	mA	
27	V _{PP2} current		IPP2CW2	_	175	_	mA	
28	V _{NN1} current		I _{NN1CW2}	_	0.24	_	mA	
29	V _{NN2} current		I _{NN2CW2}	_	185	_	mA	

2. Static characteristics

Table 7 Static Characteristics

 $V_{LL} = 2.5V, \ V_{DD}/V_{SS} = \pm 5V, \ T_A = 25^{\circ}C, \ VFP[2:0] = VFN[2:0] = 000, \ DRVPADJ = DRVNADJ = 0, \ unless \ otherwise \ specified.$

No.	Itomo	Cumbal		Spec		Units	Condition
INO.	Items	Symbol	Min.	Тур.	Max.	Units	Condition
1	HV _{o∪⊤} x output voltage range	НVоитх	-100	_	+100	V	
			ı	2.0	ı	Α	P1 active, V _{PP1} /V _{NN1} =±60V
2	HVо∪тх high-side peak current	Іон	ı	2.0	ı	Α	P2 active, Vpp2/VNN2=±60V, CC=1
			ı	1.0	ı	Α	P2 active, V _{PP2} /V _{NN2} =±60V, CC=0
3	HV _{OUT} X high-side GND clamp peak current	Іонсь	ı	1.0	ı	Α	Nd active, V _{PP1} /V _{NN1} =V _{PP2} /V _{NN2} =±60V
			ı	2.0	ı	Α	N1 active, V _{PP} /V _{NN} =±60V
4	HV _{о∪т} х low-side peak current	loL	ı	2.0	ı	Α	N2 active, V _{PP} /V _{NN} =±60V, CC=1
			-	1.0	-	Α	N2 active, V _{PP} /V _{NN} =±60V, CC=0
5	HVоuтх low-side GND clamp peak current	lolcl	ı	1.0	ı	Α	Pd active, Vpp1/Vnn1=Vpp2/Vnn2=±60V
			ı	15	-	Ω	I _{OH} =100mA, P1 active
6	HVо∪т x high-side on-resistance	Ronh	ı	15	-	Ω	Іон=100mA, P2 active, CC=1
			ı	23	-	Ω	I _{OH} =100mA, P2 active, CC=0
7	HVoutx high-side GND clamp on-resistance	Ronhcl	ı	20	ı	Ω	Іонсь=100mA, Pd active
			_	15	_	Ω	I _{OL} =100mA, N1 active
8	HVо∪т x low-side on-resistance	RONL	-	15	-	Ω	IoL=100mA, N2 active, CC=1
			-	23	-	Ω	I _{OL} =100mA, N2 active, CC=0
9	$HV_{\text{OUT}}x$ low-side GND clamp onresistance	Ronlcl	ı	20	-	Ω	I _{OLCL} =100mA, Nd active
10	HV _{оит} х off-capacitance	CHVOFF	-	34	-	pF	TX _{OUT} x=GND, TRSW=off

3. Dynamic characteristics

Table 8 Dynamic Characteristics

 $V_{\text{LL}}=2.5\text{V, }V_{\text{DD}}/V_{\text{SS}}=\pm5\text{V, }T_{\text{A}}=25^{\circ}\text{C, }CLKP/CLKN=100MHz, VFPCTL[2:0]=VFNCTL[2:0]='000', \ HV_{\text{OUT}}\ load=220pF//200\Omega, \ LV_{\text{OUT}}\ load=47pF//200\Omega, \ unless otherwise specified.$

Na	Items	Comple ed		Spec		Llaita	Condition
No.	items	Symbol	Min.	Тур.	Max.	Units	Condition
1	Output frequency	four	_	20	_	MHz	
2	Output rise propagation delay	t_{dr}	_	40	_	ns	
3	Output fall propagation delay	t_{df}	_	40	_	ns	
4	Output rise propagation delay clamp	t _{drCL}	-	40	-	ns	
5	Output fall propagation delay clamp	t _{dfCL}	1	40	1	ns	
6	Propagation delay matching	Δt_{d}	_	±1	±3	ns	
			_	18	_	ns	P1 active
7	Output rise time	t_{r}	_	18	_	ns	P2 active, CC=1
'	Output rise time		-	33	-	ns	P2 active, CC=0
		t_{rCL}	-	15	-	ns	Pd active
			-	18	-	ns	N1 active
8	Output fall time	t_f	-	18	-	ns	N2 active, CC=1
	Output fail time		_	33	-	ns	N2 active, CC=0
		t_fCL	-	15	-	ns	Nd active
9	2nd harmonic distortion	HD2	-	-40	-	dBc	
10	Pulse cancellation	HDPC	_	-40	_	dBc	Bipolar, 2-cycle, f _{OUT} =5MHz
10	Pulse caricellation	HDPC2	_	-40	_	dBc	
11	RMS output jitter	tJ	_	10	_	ps	Bipolar CW, f _{OUT} =5MHz, V _{PP} /V _{NN} =±5V, HV _{OUT} load=50Ω
12	Crosstalk between channels	X_{TLK}	-	-70	-	dB	f_{OUT} =5MHz, $10V_{p-p}$, HV_{OUT} load=50 Ω

OCTAL PROGRAMMABLE 5-LEVEL HIGH-VOLTAGE ULTRASOUND TRANSMIT BEAMFORMER S-UM5588 Rev.1.0 00

4. Integrated peripheral circuits characteristics

4. 1 T/R Switch characteristics

Table 9 T/R Switch Characteristics

V_{LL}=2.5V, V_{DD}/V_{SS}=±5V, V_{PP}1/V_{NN}1=V_{PP}2/V_{NN}2=±60V, T_A=25°C, unless otherwise specified.

No.	Items	Cumbal	Spec			Units	Condition
NO.	. items	Symbol	Min.	Тур.	Max.	Oills	Condition
1	LV _{OUT} x output voltage range	LV _{OUT} x	-0.85	-	+0.85	V	
2	TRSW on-resistance	Rontr	-	15	-	Ω	HV _{OUT} x=100mV, LV _{OUT} x=0V
3	TRSW on-capacitance	Contr	ı	15	1	pF	LV _{OUT} x=0V
4	TRSW off-resistance on HVOUTx	Rofftrhv	1	1	ı	МΩ	
5	TRSW off-resistance on LVOUTx	Rofftrlv	8	10	12	kΩ	
6	Spike voltage on HV _{OUT} x and LV _{OUT} x	V_{TRN}	ı	ı	110	mV_{PP}	220pF//200 Ω load on HV _{OUT} X 47pF//200 Ω load on LV _{OUT} X
7	TRSW turn-on time	t _{dTRON}	-	300	_	ns	Logic input-to-ready for Rx signal See Fig.15
8	TRSW turn-off time	t _{dTROFF}	_	50	100	ns	See Fig.15

4. 2 Analog Switch

Table 10 Analog Switch Characteristics

V_{LL}=2.5V, V_{DD}/V_{SS}=±5V, T_A=25°C, unless otherwise specified.

No	No. Itama			Spec		Units	Condition
No.	Items	Symbol	Min.	Тур.	Max.	Units	Condition
1	ASW on-resistance	Ronasw	_	250	_	Ω	

4. 3 HV Blocking Diode

Table 11 HV Blocking Diode Characteristics

V_{LL}=2.5V, V_{DD}/V_{SS}=±5V, T_A=25°C, unless otherwise specified.

No	No. Itomo		Spec			Units	Condition
INO.	No. Items	Symbol	Min.	Тур.	Max.	Units	Condition
1	4 5 1 11	\	-	1.0	l	V	I _F =100mA
'	Forward voltage	V_{FHVD}	-	1.2	_	V	I _F =200mA
2	Reverse voltage	V_{RHVD}	200	_	1	V	I _R =1µA

4. 4 LV Noise-cut Diode

Table 12 LV Noise-cut Diode Characteristics

 V_{LL} =2.5V, V_{DD}/V_{SS} =±5V, T_A =25°C, unless otherwise specified.

No.	Itomo	Symbol		Spec		Units	Condition
NO.	Items	Syllibol	Min.	Тур.	Max.	Ullits	Condition
1	Forward voltage	V_{FLVD}	ı	1.1	-	V	I _F =100mA
'	Forward voltage	V FLVD	ı	1.25	_	V	I _F =200mA

4. 5 Thermal Protection

Table 13 Thermal Protection Characteristics

 V_{LL} =2.5V, V_{DD}/V_{SS} =±5V, T_A =25°C, unless otherwise specified.

No.	Itomo	Cumbal		Spec		Units	Condition
INO.	Items	Symbol	Min.	Тур.	Max.	Units	Condition
			90	110	120	ç	THPCTL[1:0]=00
4	TUD tamparatura threshold	T_THP	120	130	140	ç	THPCTL[1:0]=01
l I	THP temperature threshold		140	150	160	ç	THPCTL[1:0]=10
			-	Disabled	ı	°C	THPCTL[1:0]=11 (THP is disabled)
2	THP reset hysteresis	T _{HYSTHP}	5	10	20	°C	

■ Operation Mode

Table 14 Operation Mode

Section	EN	CSP	SPIEN*2	TRIG	Tx Pattern Signal	SPI LVDS Receiver	Memory Write	Memory Read	Register Write	Register Read	Tx	Rx	Operation mode	
Α	1	0	0	×	×	Bias on							IC disabled	
А	ı	U	1	^	^	Bias off	-	_	ı		1		IC disabled	
			0			Bias on	✓	✓	ı	✓			IC disabled,	
В	1	1	1	×	×	Bias off	ı	-	1	-	ı		W/R of Memory and Read of Register	
			0			Bias on	✓	✓	✓	✓			Rx, W/R of Memory or Register, Reset of Tx Operation	
С	0	1	1	×	×	Bias off	ı	ı	1	-	ı			
D	0	0	0	1		Bias on						√ *1	Rx & Reset of Tx	
D	U	0	1		×	Bias off	_	_	-	_	_	٧ '	Operation	
F	0	_	0	_	C = = = = + = d	Bias on					√ *1		т.,	
E	U	0	1	0	Generated	Bias off	_	_	-	_	۷ .	_	Tx	
F	0	0	0	0	nono	Bias on						√*1	Dv	
Г	U	U	1	U	none	Bias off	_	_				ν.	Rx	

- *1. Individual register parameter on Tx/Rx active channel (TXACT[x] and RXACT[x]) is necessary to be set "1".
- *2. SPIEN Signal is used to reduce the bias current of SPI LVDS Receiver when SPI is not used. (Power on/off time of LVDS receiver is <300ns/<100ns.)

Remark ✓: Available

- -: Not available
- ×: Don't care

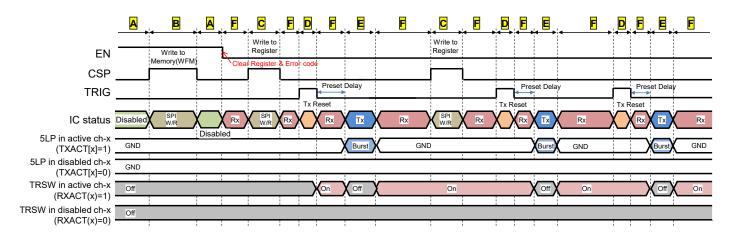


Figure 9 An Example of Operating Sequence

■ SPI Header Configuration

Table 15 SPI Operation Table

	SDATA	Contro	l Head	er (Firs	t 1Byte	of SDA	ATA)	
D7 (MSB)	D6	D5	D4	D3	D2	D1	D0 (LSB)	SPI Operation
0	0	0	0					Write to the first 7Byte (R#0 to R#6) Control Registers and CRC[7:0]
0	1	0	0					Write to all 16Byte Control Registers and CRC[7:0]
1	0	0	0					N/A
1	1	0	0					Write to Memory and CRC[7:0]
0	0	0	1			0000 eserved	1)	Read from the first 7Byte (R#0 to R#6) Control Registers and CRC[7:0]
0	1	0	1		(-,	Read from all 16Byte Control Registers and CRC[7:0]
1	0	0	1					N/A
1	1	0	1					Read from Memory and CRC[7:0] through SDOUT pin
×	×	1	0					Read from ERROR[7:0] through SDOUT pin
×	×	1	1					Read from DSUM[7:0] through SDOUT pin

< 8bit CRC Conditions>

CRC initial value = 00000000

CRC Polynomial equation is X8+X5+X4+1

Remark ×: Don't care

■ Access to Memory or Registers with SPI

1. SPI write to memory or registers operation

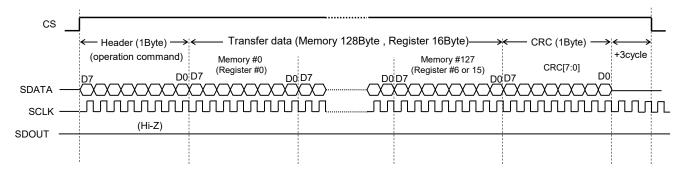


Figure 10 Sequence of Writing to Memory or Registers with SPI

Remark < CRC Conditions>

CRC initial value = 00000000

CRC Polynomial equation is X8+X5+X4+1

In SPI "WRITE" operation, internal logic circuit also calculates the CRC ,and writes it to internal Register DSUM[7:0]. If CRC[7:0] matches DSUM[7:0], ERROR[0] = 0. If unmatched, ERROR[0] = 1 and FAULT pin reports, unless fault report is released.

2. Read back form memory or registers operation

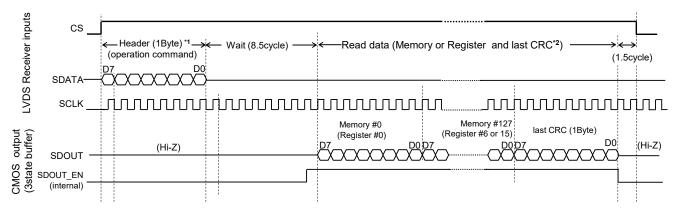


Figure 11 Sequence of Reading from Memory or Registers with SPI

- *1. In case of "READ" operation, SDATA inputs except for Header are ignored. (CRC error detection is disabled).
- *2. Last CRC is the received CRC data from FPGA in previous "WRITE" operation to Memory or Register.

■ 5LP+TRSW Operation Example

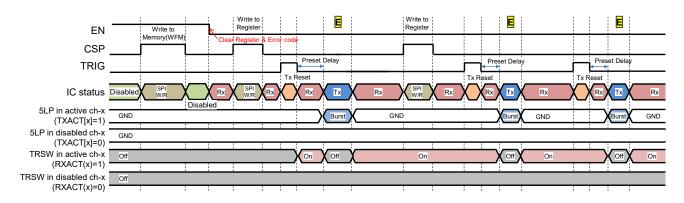


Figure 12 An Example of IC State Timing Diagram and 5LP Operation

WFM

Tx starts from TRIG fall edge with preset delay time. TRSW turns on except for Tx Burst period or IC-disabled.

Generating Tx WF Pattern

CODE [1:0] = output state (±HV, GND) Pulse width = $5ns \times (W_{4:0}+2)$ (decimal, 10ns to 165ns) START [6:0] = starting address STOP [6:0] = stopping address Repeat count(s) = 1, 1×REPEAT[7:0], 16×REPEAT[7:0], CW

Generating Tx Delay (8ch)

CHx delay time form TRIG fall edge = BASE-DELAY + CHx-DELAY BASE-DELAY(common) = 160ns×(BASEDL[7:0])+200ns

CHx-DELAY(/ch) = 5ns*(CHxDL[7:0])

see Truth Table START[6:0]> Pulse #1 STOP[6:0] Pulse #2 CODE 127 CODE127 Pulse #127 CW mode ends with CS = 1 or TRIG = 1. Register (decimal, 0.2µs to 41µs) (x=0 to 7, decimal, 0 to 1.275µs) Delay time resolution = 5ns

■ Truth Table

Table 16 Truth Table

	IC status	6	Exte	rnal	singal	Internal	Control	Register		WFM DE[2	:0]	Control Register		M	OSFE [*]	CHx T/ASW		N stat	us			Output ate
	mode	SPI	EN	cs	TRIG	Tx-PT(x)	TXACT	RXACT	[2]	[1]	[0]	INV	P1	N1	P2	N2	Pd	Nd	250Ω ASW	TRSW	TXOUT»	LVOUTx
Α	IC disabled	no op.	1	0	×	none	×	×	×	×	×	×	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	GND	10kΩ
A B	ic disabled	Mem. W	1	1	×	none	×	×	×	×	×	×	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	GND	10kΩ
Г		Memory	0	1	×	none	0	0	×	×	×	×	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	GND	10kΩ
L	Rx & Tx Reset	W/R	0	1	×	none	0	1	×	×	×	×	OFF	OFF	OFF	OFF	ON	ON	ON	ON	GND	$HVOUT_x$
C	by SPI W/R	or Register	0	1	×	none	1	0	×	×	×	×	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	GND	10kΩ
		W/R	0	1	×	none	1	1	×	×	×	×	OFF	OFF	OFF	OFF	ON	ON	ON	ON	GND	$HVOUT_x$
Г			0	0	1	none	0	0	×	×	×	×	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	GND	10kΩ
L	Rx & Tx Reset		0	0	1	none	0	1	×	×	×	×	OFF	OFF	OFF	OFF	ON	ON	ON	ON	GND	$HVOUT_x$
۲	By TRIG	no op.	0	0	1	none	1	0	×	×	×	×	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	GND	10kΩ
			0	0	1	none	1	1	×	×	×	×	OFF	OFF	OFF	OFF	ON	ON	ON	ON	GND	$HVOUT_x$
Г			0	0	0	Gen.	1	×	0	0	0	×	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	GND	10kΩ
			0	0	0	Gen.	1	×	0	0	1	0	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	+HV1	10kΩ
			0	0	0	Gen.	1	×	0	0	1	1	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	-HV1	10kΩ
			0	0	0	Gen.	1	×	0	1	0	0	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	-HV1	10kΩ
			0	0	0	Gen.	1	×	0	1	0	1	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	+HV1	10kΩ
F	Tx	no op.	0	0	0	Gen.	1	×	0	1	1	×				N/	/A				N	/A
r	1.	по ор.	0	0	0	Gen.	1	×	1	0	0	×	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	GND	10kΩ
			0	0	0	Gen.	1	×	1	0	1	0	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	+HV2	10kΩ
			0	0	0	Gen.	1	×	1	0	1	1	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	-HV2	10kΩ
			0	0	0	Gen.	1	×	1	1	0	0	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	-HV2	10kΩ
I			0	0	0	Gen.	1	×	1	1	0	1	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	+HV2	10kΩ
L			0	0	0	Gen.	1	×	1	1	1	×				N/	_					/A
F	Rx	no op.	0	0	0	none	×	0	×	×	×	×	OFF	OFF	OFF	OFF	ON	ON	ON	OFF	GND	10kΩ
Ľ	134	. 10 ор.	0	0	0	none	×	1	×	×	×	×	OFF	OFF	OFF	OFF	ON	ON	ON	ON	GND	$HVOUT_x$

Remark ×: Don't care

Table 17 Truth Table

DRVP	DRVN	l _{ou} -	r[A]
ADJ	ADJ	P1	N1
0	0	2	2
0	1	2	2.1
1	0	2.1	2
1	1	2.1	2.1

Table 18 Truth Table

Current	CC	lou	т[А]
mode	Ö	P2	N2
0	0	1	1
1	1	2	2

Table 19 Truth Table

,	VFPCTL	-	VPP1-VFP1	VPP2-VFP2
[2]	[1]	[0]	[V]	[V]
0	0	0	5	5
0	0	1	5.15	5.15
0	1	0	5.3	5.3
0	1	1	5.45	5.45
1	0	0	5	5
1	0	1	4.85	4.85
1	1	0	4.7	4.7
1	1	1	4.55	4.55

Table 20 Truth Table

١	/FNCT	L	VFN1-VNN1	VFN2-VNN2
[2]	[1]	[0]	[V]	[V]
0	0	0	5	5
0	0	1	5.15	5.15
0	1	0	5.3	5.3
0	1	1	5.45	5.45
1	0	0	5	5
1	0	1	4.85	4.85
1	1	0	4.7	4.7
1	1	1	4.55	4.55

■ Timing Chart

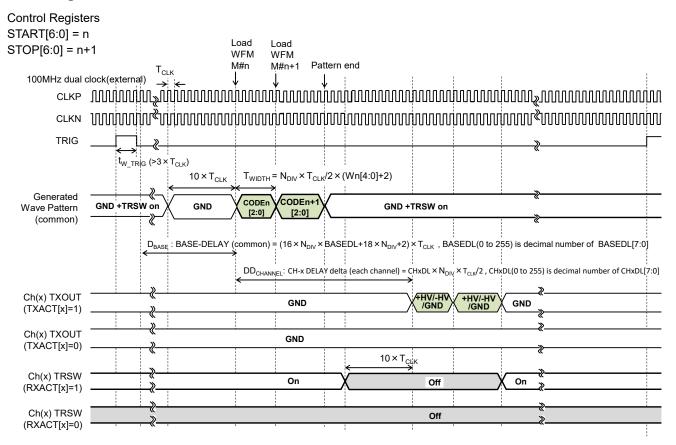


Figure 13 An Example of 5LP State Timing Diagram with Register TXACT[x] & RXACT[x] (x=0 to 15)

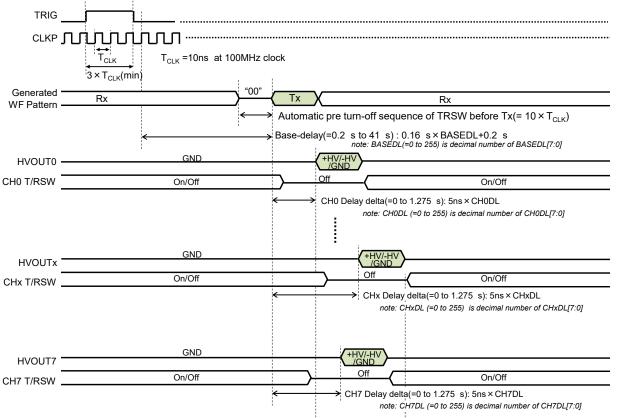


Figure 14 An Example of 5LP State Timing Diagram with Register BASEDL[7:0] & CHxDL[8:0] (x=0 to 15)

■ Tx Propagation Delay and Rise/Fall Time Definition

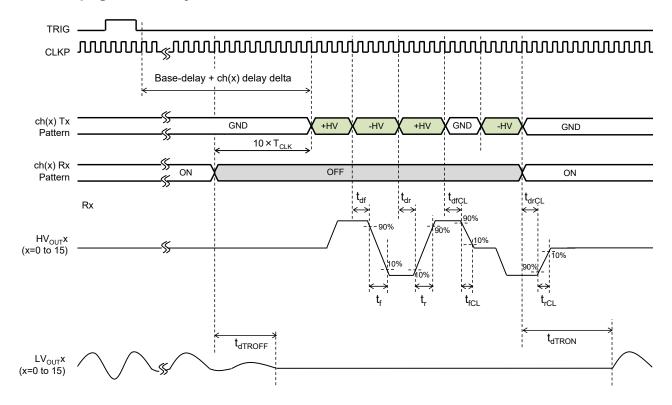


Fig.15 Tx propagation Delay and Rise/Fall Time

■ Tx Pulse Width and Delay Control Table

Table 21 Tx Pulse Width and Delay Control Table

Clock frequency = 100MHz (T_{CLK}=10ns)

Oloc	k frequency – To	JUIVII IZ	(TCLK-TUTIS)					
No.	Items		Symbol		Spec		Units	Note
	nome		- Cyllison	Min.	Тур.	Max.	Omic	110.0
		N _{DIV} =1		10	_	165		Twidth [ns] = N _{DIV} ×T _{CLK} /2 × (WIDTHx + 2)
1	Tx pulse width	N _{DIV} =2	Twidth	20	_	330	ns	WIDTHx(=0 to 31) is decimal number of
		N _{DIV} =4		40	1	660		WIDTHx[4:0] in memory #x, x=0 to 127
	Tre mula a suidible	N _{DIV} =1		ı	5	I		
2	Tx pulse width resolution	N _{DIV} =2	ΔT_{WIDTH}	-	10	ı	ns	ΔTwidth=Ndiv×Tclκ/2
		N _{DIV} =4		-	20	ı		
		N _{DIV} =1		0.2	1	41		D _{BASE} =(16×N _{DIV} ×BASEDL+18×N _{DIV} +2)×T _{CLK}
3	Base delay range	N _{DIV} =2	DBASE	0.38	-	81.98	μs	BASEDL(=0 to 255) is decimal number of
	0	N _{DIV} =4		0.74	_	163.94		BASEDL[7:0]
		N _{DIV} =1		-	0.16	1		
4	Base delay resolution	N _{DIV} =2	ΔD_{BASE}	-	0.32	1	μs	ΔD_{BASE} =16×N _{DIV} ×T _{CLK}
	rocoldilori	N _{DIV} =4		_	0.64	1		
	CHx delay	N _{DIV} =1		0	1	1275		DD _{CHANNEL} = N _{DIV} ×T _{CLK} /2×CHxDL
5	delta range	N _{DIV} =2	DD _{CHANNEL}	0	_	2550	ns	CHxDL(=0 to 255) is decimal number of CHxDL[7:0]
	(x=0 to 15)	N _{DIV} =4		0	1	5100		x=0 to 7
	CHx delay	N _{DIV} =1		_	5	_	ns	
6	delta resolution	N _{DIV} =2	ΔDDchannel	-	10	-		ΔDDchannel=N _{DIV} ×T _{CLK} /2
	(x=0 to 15)	N _{DIV} =4		_	20	1		

Remark N_{DIV}(=1,2,4) is internal clock dividing factor with Register CKDIV[1:0].

CKDIV[1:0]=00: N_{DIV} =1 CKDIV[1:0]=01: N_{DIV} =2 CKDIV[1:0]=10,11: N_{DIV} =4

OCTAL PROGRAMMABLE 5-LEVEL HIGH-VOLTAGE ULTRASOUND TRANSMIT BEAMFORMER S-UM5588 Rev.1.0 00

■ Memory MAP

Table 22 Memory Map

Memory #	D7	D6	D5	D4	D3	D2	D1	D0				
0		CODE0[2:0]		WIDTH0[4:0]								
1		CODE1[2:0]				WIDTH1[4:0]						
2		CODE2[2:0]				WIDTH2[4:0]						
3		CODE3[2:0]				WIDTH3[4:0]						
:		:		:								
:		:		:								
:		:		:								
124	(CODE124[2:0] WIDTH124[4:0]										
125	(CODE125[2:0]		WIDTH125[4:0]								
126	(CODE126[2:0]		WIDTH126[4:0]								
127	(CODE127[2:0]		WIDTH127[4:0]								

Remark 1. In Memory Map, each 1-byte code consists of upper 3-bit CODEx[3:0] and lower 5-bit WIDTHx[4:0]. Suffix "x" corresponds to 1-byte Memory number (x=0 to 127).

- 2. CODEx[2:0] stands for an output state of Tx burst as shown in Truth Table.
- 3. WIDTHx[4:0] expresses the pulse width (T_{WIDTH}) which is calculated as follows. T_{WIDTH} [ns] = $N_{DIV} \times T_{CLK}/2 \times (WIDTHx + 2)$
- **4.** Where, T_{CLK} is the CLKP/CLKN clock period, WIDTHx(=0 to 31) is decimal number of WIDTHx[4:0] and N_{DIV}(=1,2,4) is internal clock dividing factor with Register CKDIV[1:0].
- 5. In case of 100MHz CLK,

■ Register Parameter Function

Table 23 Register Parameter Function

	100	20 110	Jister Parameter Function				
Items	Register	type	function				
WFM Read Address(start)	START [6:0]	common	Starting address of the Waveform Memory for generating the Tx waveform pattern				
WFM Read Address(stop)	STOP [6:0]	common	Stop address of the Waveform Memory for generating the Tx waveform pattern				
TX Waveform control	INV	common	Inversion control of generating Tx waveform pattern				
Wave generation Repeat control(1)	MUL-RPT	common	Multiplying factor selection for REPEAT[7:0] (1: 1×REPEAT[7:0], 0: 16×REPEAT[7:0])				
Tx driver current control	current control CC co		P2/N2 Tx driver current control (0=1A, 1=2A)				
Tx clock dividing	CKDIV [1:0]	common	Internal clock dividing factor "N _{DIV} " selection (00:N _{DIV} =1, 01:N _{DIV} =2, 10 or 11 :N _{DIV} =4)				
P1 Driver adjusment	DRVPADJ	common	P1 driver current, 0:2A , 1:2.1A				
N1 Driver adjusment	DRVNADJ	common	N1 driver current, 0:2A , 1:2.1A				
Built-in power supply control for P1	VFP[2:0]	common	VFP[2]=0: VPP1-VFP1 (=5 to 5.45) : 5+0.15×VFP, VFP is decimal number of VFP[1:0] VFP[2]=1: VPP1-VFP1(=4.55 to 5) : 5-0.15×VFP, VFP is decimal number of VFP[1:0]				
Built-in power supply control for N1	VFN[2:0]	common	VFN[2]=0: VFN1-VNN1 (=5 to 5.45) : 5+0.15×VFN, VFN is decimal number of VFN[1:0] VFN[2]=1: VFN1-VNN1(=4.55 to 5) : 5-0.15×VFN, VFN is decimal number of VFN[1:0]				
THP detection control	THPCTL[1:0]	common	THP detection control (00:110deg , 01:130deg , 10:150deg, 11:Disabled)				
Wave generation Repeat control (2)	REPEAT[7:0]	common	Repeat counts control of Tx waveform pattern generation				
Active channel control for Tx	TXACT [7:0]	/channel	Active channel control in Tx, TXACT[x] corresponds to ch(x) in Tx				
Active channel control for Rx	RXACT [7:0]	/channel	Active channel control of T/R-SW, RXACT[x] corresponds to TRSW of ch(x)				
TX delay control (1)	BASEDL[7:0]	common	Tx offset delay (common to all channel): (16×Nddv×BASEDL+14×Nddv+2)×Tclk BASEDL(=0 to 255) is decimal number of BASEDL[7:0], Tclk is external clock period.				
TX delay control (2) CHxDL [7:0] /channel		/channel	Tx delay for each channel x (x=0 to 7): N _{DIV} ×T _{CLK} /2×CHxDL CHxDL(=0 to 255) is decimal number of CHxDL[7:0], T _{CLK} is external clock period.				

REPEAT[7:0] (Repeat counts control of Tx waveform pattern generation)

REPEAT[7:0]=00000000 : repeat count = 1

REPEAT[7:0]=00000001 to 111111110 : repeat count = 1(or 16)×REPEAT[7:0]

REPEAT[7:0]=11111111 : continuous

■ Register MAP

Table 24 Tx Control Register MAP

R#	D7	D6	D5	D4	D3	D2	D1	D0
0	reserved	START[6]	START[5]	START[4]	START[3]	START[2]	START[1]	START[0]
1	reserved	STOP[6]	STOP[5]	STOP[4]	STOP[3]	STOP[2]	STOP[1]	STOP[0]
2	INV	MUL-RPT	reserved	CC	CKDIV[1]	CKDIV[0]	THPCTL[1]	THPCTL[0]
3	REPEAT[7]	REPEAT[6]	REPEAT[5]	REPEAT[4]	REPEAT[3]	REPEAT[2]	REPEAT[1]	REPEAT[0]
4	DRVPADJ	VFP[2]	VFP[1]	VFP[0]	DRVNADJ	VFN[2]	VFN[1]	VFN[0]
5	TXACT[7]	TXACT[6]	TXACT[5]	TXACT[4]	TXACT[3]	TXACT[2]	TXACT[1]	TXACT[0]
6	RXACT[7]	RXACT[6]	RXACT[5]	RXACT[4]	RXACT[3]	RXACT[2]	RXACT[1]	RXACT[0]
7	BASEDL[7]	BASEDL[6]	BASEDL[5]	BASEDL[4]	BASEDL[3]	BASEDL[2]	BASEDL[1]	BASEDL[0]
8	CH0DL[7]	CH0DL[6]	CH0DL[5]	CH0DL[4]	CH0DL[3]	CH0DL[2]	CH0DL[1]	CH0DL[0]
9	CH1DL[7]	CH1DL[6]	CH1DL[5]	CH1DL[4]	CH1DL[3]	CH1-DL[2]	CH1DL[1]	CH1DL[0]
10	CH2DL[7]	CH2DL[6]	CH2DL[5]	CH2DL[4]	CH2DL[3]	CH2DL[2]	CH2DL[1]	CH2DL[0]
11	CH3DL[7]	CH3DL[6]	CH3DL[5]	CH3DL[4]	CH3DL[3]	CH3DL[2]	CH3DL[1]	CH3DL[0]
12	CH4DL[7]	CH4DL[6]	CH4DL[5]	CH4DL[4]	CH4DL[3]	CH4DL[2]	CH4DL[1]	CH4DL[0]
13	CH5DL[7]	CH5DL[6]	CH5DL[5]	CH5DL[4]	CH5DL[3]	CH5DL[2]	CH5DL[1]	CH5DL[0]
14	CH6DL[7]	CH6DL[6]	CH6DL[5]	CH6DL[4]	CH6DL[3]	CH6DL[2]	CH6DL[1]	CH6DL[0]
15	CH7DL[7]	CH7DL[6]	CH7DL[5]	CH7DL[4]	CH7DL[3]	CH7DL[2]	CH7DL[1]	CH7DL[0]

■ CRC and ERROR Register

Table 25 CRC, Calculated CRC and ERROR Register MAP

Register	D7	D6	D5	D4	D3	D2	D1	D0
CRC				CRO	C[7:0]			
Calculated CRC		DSUM[7:0]						
Error				ERRO	DR[7:0]			

Table 26 CRC, Calculated CRC and ERROR Register Function

CRC[7:0]	Transferred CRC data in SDATA CRC initial value = 00000000 CRC polynomial equation is X8+X5+X4+1		
DSUM[7:0]	Calculated CRC values with transferred SDATA signal		
ERROR[7:0]	When Error has occurred, ERROR register corresponding to error type is set to be "1". ERROR[7:3]: Not used. ERROR[2]: Threshold over of the junction temperature set in advance. ERROR[1]: Start and stop address for Tx waveform pattern generation are same. ERROR[0]: SPI transfer error (CRC un-match) has occurred.		

Remark Error[7:0] are cleared when IC is powered on or "EN" becomes form "high" to "low" (fall edge).

■ Pin Configuration

Table 27 Pin Configuration (1/2)

D: //	D: N	Table 27 Pin Configuration (1/2)
Pin#	Pin Name	Function
1	LVOUT1	Low voltage output of channel 1
2	LVOUT0	Low voltage output of channel 0
3	HGND	channel 0 to channel 3 Drive power ground (0V)
4	GND	Logic power ground (0V)
5	GND	Logic power ground (0V)
6	EN	Control of chip enable, H=disable, L=enable (50kΩ internal pull-up)
7	FAULT	Fault output flag, open N-MOS drain
8	VDD	Positive low voltage power supply (+5V)
9	CLKP	Positive LVDS/CMOS clock input (up to 100MHz)
10	CLKN	Negative LVDS/CMOS clock Input (up to 100MHz)
11	GND	Logic power ground (0V)
12	TRIG	Tx Trigger signal
13	VLL	Positive low voltage power supply (+2.5 to 3.3V)
14	CLKIF	I/F selection for CLKP/CLKN, H:CMOS L:LVDS (50kΩ internal pull-down)
15	HGND	channel 4 to channel 7 Drive power ground (0V)
16	LVOUT7	Low voltage output of channel 7
17	LVOUT6	Low voltage output of channel 6
18	VFP1	Built-in power supply for channel 4 to channel 7 P-MOS (P1) gate drive
19	HVOUT7	High voltage output of channel 7
20	VPP1	Positive high voltage power supply (0 to +100V) for channel 4 to channel 7 P-MOS (P1) Driver
21	VPP1	Positive high voltage power supply (0 to +100V) for channel 4 to channel 7 P-MOS (P1) Driver
22	HVOUT6	High voltage output of channel 6
23	VPP2	Positive high voltage power supply (0 to +100V) for channel 4 to channel 7 P-MOS (P2) Driver
24	VPP2	Positive high voltage power supply (0 to +100V) for channel 4 to channel 7 P-MOS (P2) Driver
25	VFP2	Built-in power supply for channel 4 to channel 7 P-MOS (P2) gate drive
26	HGND	channel 4 to channel 7 Drive power ground (0V)
27	VFN2	Built-in power supply for channel 4 to channel 7 N-MOS (N2) gate drive
28	VNN2	Negative high voltage power supply (0 to -100V) channel 4 to channel 7 N-MOS (N2) Driver
29	VNN2	Negative high voltage power supply (0 to -100V) channel 4 to channel 7 N-MOS (N2) Driver
30	HVOUT5	High voltage output of channel 5
31	VNN1	Negative high voltage power supply (0 to -100V) channel 4 to channel 7 N-MOS (N1) Driver
32	VNN1	Negative high voltage power supply (0 to -100V) channel 4 to channel 7 N-MOS (N1) Driver
33	HVOUT4	High voltage output of channel 4
34	VFN1	Built-in power supply for channel 4 to channel 7 N-MOS (N1) gate drive
35	LVOUT5	Low voltage output of channel 5
36	LVOUT4	Low voltage output of channel 4
37	HGND	channel 4 to channel 7 Drive power ground (0V)
38	SDOUT	SPI serial output data (CMOS)
39	SPIEN	Control of SPI Reciver Enable, H=disable, L=enable (50kΩ internal pull-up)
40	SDATAP	SPI positive serial input data (LVDS/CMOS)
41	SDATAN	SPI negative serial input data (LVDS/CMOS)
42	VDD	Positive low voltage power supply (+5V)
43	GND	Logic power ground (0V)
44	VSS	Negative low voltage power supply (-5V)
45	SCLKP	SPI Positive LVDS/CMOS clock input (up to 100MHz)
46	SCLKN	SPI negative LVDS/CMOS clock Input (up to 100MHz)
47	CSP	SPI positive chip select signal (LVDS/CMOS)
48	CSN	SPI negative chip select signal (LVDS/CMOS)
49	HGND	channel 0 to channel 3 Drive power ground (0V)
50	LVOUT3	Low voltage output of channel 3
51	LVOUT2	Low voltage output of channel 2

OCTAL PROGRAMMABLE 5-LEVEL HIGH-VOLTAGE ULTRASOUND TRANSMIT BEAMFORMER Rev. 1.0_{-00}

Table 27 Pin Configuration (2/2)

Pin#	Pin Name	Function
52	VFN1	Built-in power supply for channel 0 to channel 3 N-MOS (N1) gate drive
53	HVOUT3	High voltage output of channel 3
54	VNN1	Negative high voltage power supply (0 to -100V) channel 0 to channel 3 N-MOS (N1) Driver
55	VNN1	Negative high voltage power supply (0 to -100V) channel 0 to channel 3 N-MOS (N1) Driver
56	HVOUT2	High voltage output of channel 2
57	VNN2	Negative high voltage power supply (0 to -100V) channel 0 to channel 3 N-MOS (N2) Driver
58	VNN2	Negative high voltage power supply (0 to -100V) channel 0 to channel 3 N-MOS (N2) Driver
59	VFN2	Built-in power supply for channel 0 to channel 3 N-MOS (N2) gate drive
60	HGND	channel 0 to channel 7 Drive power ground (0V)
61	VFP2	Built-in power supply for channel 0 to channel 3 P-MOS (P2) gate drive
62	VPP2	Positive high voltage power supply (0 to +100V) for channel 0 to channel 3 P-MOS (P2) Driver
63	VPP2	Positive high voltage power supply (0 to +100V) for channel 0 to channel 3 P-MOS (P2) Driver
64	HVOUT1	High voltage output of channel 1
65	VPP1	Positive high voltage power supply (0 to +100V) for channel 0 to channel 3 P-MOS (P1) Driver
66	VPP1	Positive high voltage power supply (0 to +100V) for channel 0 to channel 3 P-MOS (P1) Driver
67	HVOUT0	High voltage output of channel 0
68	VFP1	Built-in power supply for channel 0 to channel 3 P-MOS (P1) gate drive

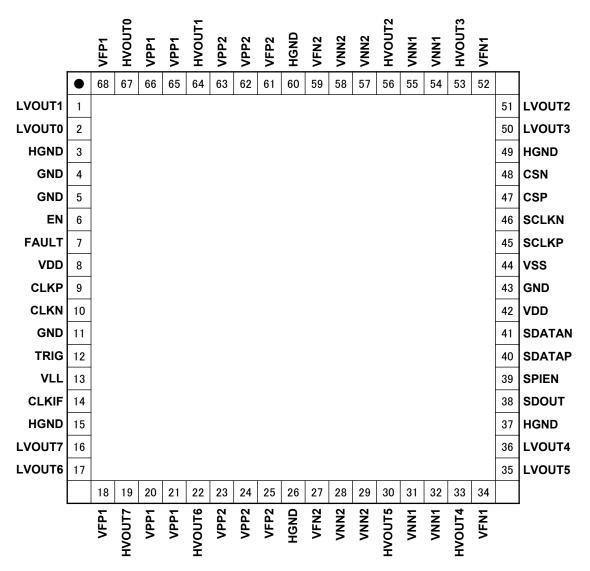


Figure 16 Pin Configuration

■ Package

Table 28 Package Drawing Codes

Package Name	Dimension	Tray	Marking	Land	Packing
QFN-68(1010)B	QN068-B-P	QN068-B-T	QN068-B-M	QN068-B-L	QN068-B-K

■ Storage, Mounting

1. Storage Conditions

- 1. 1 The storage location should be kept at 5 to 35 °C and 40 to 70% relative humidity. Keeping in a dry box is recommended. Moisture-proof property is assured for 12 months from delivery date for sealed moisture-proof packing, while it is guaranteed for 7 days from unpacked date under the condition above.
- 1. 2 When the storage conditions do not conform to those above or other conditions occur indicating moisture exposure, the ICs should be dried to avoid package cracks. A baking process at 125 °C lasting for 24 hours results in sufficient dehumidification. The baking is not allowed more than twice, and the ICs should be mounted within 7 days after initial baking or within 10 days of total exposure after the second dehumidification.

2. Reflow soldering

The temperature rise may be different in the resin and a terminal part due to the reflow soldering. It is necessary to check the package surface temperature (resin) before setting the temperature profile. **Figure 17** shows the resistance to soldering heat condition for package (Reflow method). Confirm the heat resistance of the package shown below. (Based on JEDEC J-STD-020).

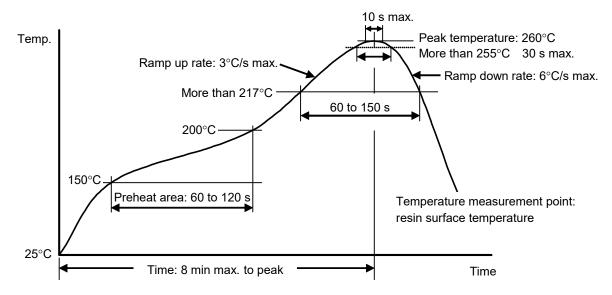
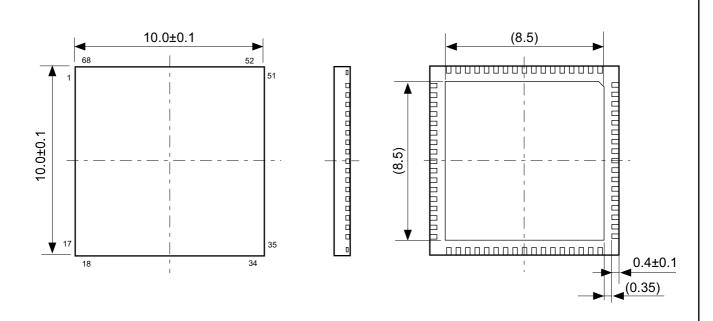
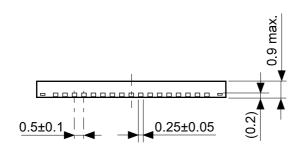


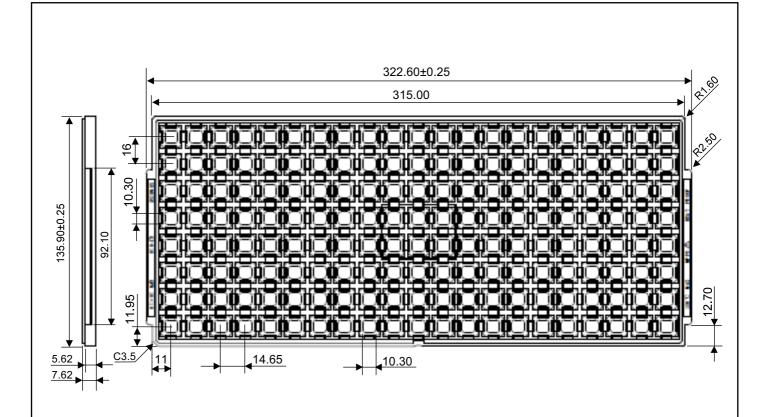
Figure 17 Resistance to soldering heat condition for package (Reflow method)

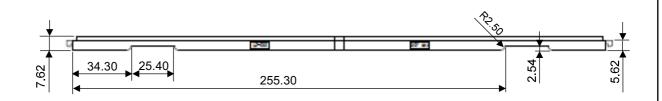

OCTAL PROGRAMMABLE 5-LEVEL HIGH-VOLTAGE ULTRASOUND TRANSMIT BEAMFORMER S-UM5588 Rev.1.0 00

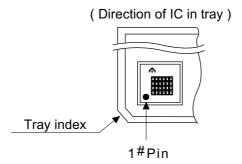

■ Important Notice

- 1. ABLIC Inc. warrants performance of its hardware products (hereinafter called "products") to the specifications applicable at the time of sale in accordance with the Product Specification. Testing and other quality control techniques are utilized to the extent ABLIC Inc. needs to meet specifications described in the Product Specification. Specific testing of all parameters of each device is not necessarily performed, except those mandated by related laws and/or regulations.
- 2. Should any claim be made within one month of product delivery about products' failure to meet performance described in the Product Specification, all the products in relevant lot(s) shall be re-tested and re-delivered. Products delivered more than one month before of such claim shall not be counted for such response.
- 3. ABLIC Inc. assumes no obligation or any way of compensation should any fault about customer products and applications using ABLIC Inc. products be found in marketplace. Only in such a case fault of ABLIC Inc. is evident and products concerned do not meet the Product Specification, compensation shall be conducted if claimed within one year of product delivery up to in the way of product replacement or payment of equivalent amount.
- 4. ABLIC Inc. reserves the right to make changes to the Product Specification at any time and to discontinue mass production of the relevant products without notice. Customers are advised before placing orders to confirm that the Product Specification of inquiry is the latest version and that the relevant product is currently on mass production status.
- 5. In no event shall ABLIC Inc. be liable for any damage that may result from an accident or any other cause during operation of the user's units according to the Product Specification. ABLIC Inc. assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the Product Specification.
- 6. No license is granted by the Product Specification under any patents or other rights of any third party or ABLIC Inc.
- 7. The Product Specification may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of ABLIC Inc.
- 8. Resale of ABLIC Inc. products with statements different from or beyond the parameters described in the Product Specification voids all express and any implied warranties for the products, and is an unfair and deceptive business practice. ABLIC Inc. is not responsible or liable for any such statements.
- 9. Products (technologies) described in the Product Specification are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting those products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.

■ Cautions

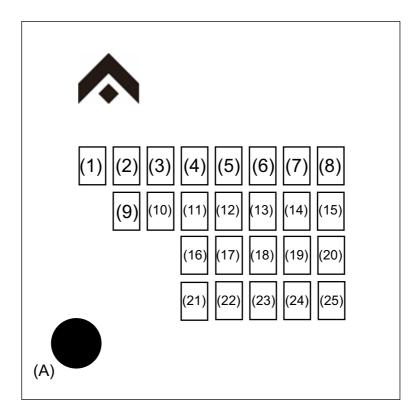

- 1. Customers are advised to follow the cautions below to protect products from damage caused by electrical static discharge (ESD).
 - 1. 1 Material of container or any device to carry products should be free from ESD, which may be caused by vibration while transportation. It is recommended that electric-conductive container or aluminum sheet be used as an effective countermeasure.
 - 1. 2 Those what touch products such as work platform, machine, measurement/test equipment should be grounded.
 - 1.3 Those who deal with products should be grounded through a large series impedance around $100k\Omega$ to 1MO
 - 1. 4 Prevent friction with other materials made with high polymer.
 - 1. 5 Prevent vibration or friction when carrying the printed circuit board (PCB) where products are mounted. To short circuit terminals is a recommended countermeasure to keep the same electric potential on the PCB.
 - 1. 6 Avoid dealing with or storing products in an extremely arid environment.
- "Absolute maximum ratings" should never be exceeded during use regardless of any change in external
 conditions. Otherwise, products may be damaged or destroyed. In no event shall ABLIC Inc. be liable for any
 failure in products or any secondary damage resulting from use at a value exceeding the absolute maximum
 ratings.
- 3. Products may experience failures due to accident or unexpected surge voltages. Accordingly, adopt safe design features, such as redundancy or prevention of erroneous action, to avoid extensive damage in the event of a failure. (If a semiconductor device fails, there may be cases in which the semiconductor device, wiring or wiring pattern will emit smoke or cause a fire or in which the semiconductor device will burst.)
- 4. Products may experience failures or malfunction in poor surroundings, such as electrical leakage in products due to long-term use in high humidity, malfunctioning or permanent damage due to chemical reaction of products in corrosive environment or due to discharge by strongly charged object near products or due to excessive mechanical shock. To use products in radiation environment is not assumed. To use products near material easy to ignite may cause a fire due to its flammable package. Avoid using products in such environment or take appropriate countermeasures depending on the environment.
- 5. Products are not designed, manufactured, or warranted to be suitable for use where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment). Inclusion of products in such application shall be fully at the risk of customers. ABLIC Inc. assumes no liability for applications assistance, customer product design, or performance.





No. QN068-B-P-SD-1.0

TITLE	QFN68-B-PKG Dimensions	
No.	QN068-B-P-SD-1.0	
ANGLE	\$ =3	
UNIT	mm	
ABLIC Inc.		



No. QN068-B-T-SD-1.0

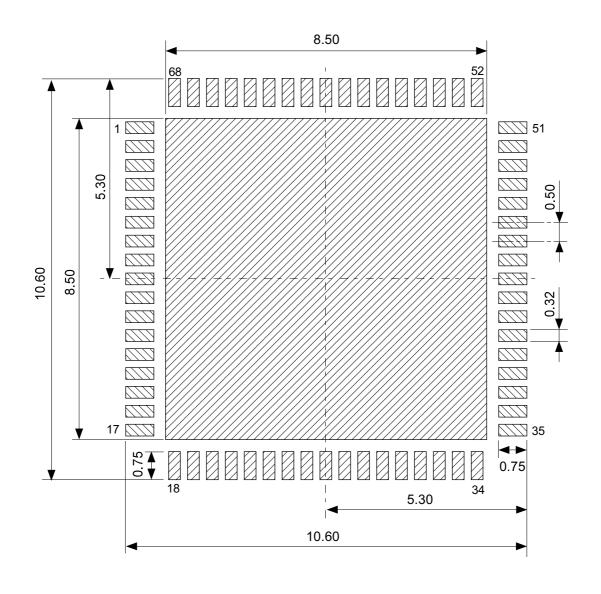
TITLE	QFN68-B-Tray			
No.	QN068	QN068-B-T-SD-1.0		
ANGLE		QTY.	168	
UNIT	mm	-		
ABLIC Inc.				

(1) to (10) : Product code

(11), (12) : Quality control code

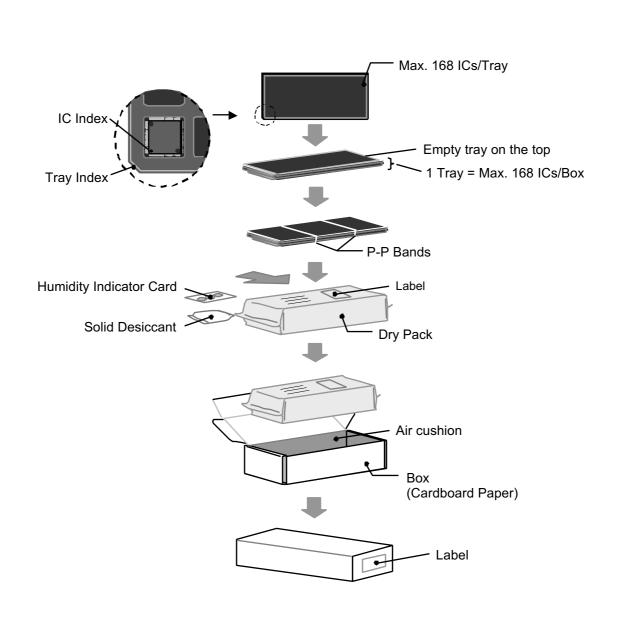
(13) : Year of assembly

(14) : Month of assembly


(15) : Week of assembly

(16) to (25): Quality control code

(A) : 1-pin mark


No. QN068-B-M-S1-1.0

TITLE	QFN68-B-Ma	arkin	gs
No.	QN068-B-M-S1-1.0		.0
ANGLE			
UNIT	7	TYPE	LASER
ABLIC Inc.			

No. QN068-B-L-SD-1.0

TITLE	QFN68-B -Land Recommendation	
No.	QN068-B-L-SD-1.0	
ANGLE		
UNIT	mm	
ABLIC Inc.		

TITLE	QFN68-B -Packing Procedure	
No. QN068-B-K-SD-2.0		
ANGLE		
UNIT		
ABLIC Inc.		

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- 2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.
- 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.
- 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc.
 - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.
- 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments.
 - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.
- 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.
 - The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility.
- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc.
- 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative.
- 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.

