

S-575S/5N B Series

Home appliance

www.ablic.com

125°C OPERATION, HIGH-WITHSTAND VOLTAGE, HIGH-SPEED, UNIPOLAR DETECTION TYPE HALL EFFECT SWITCH IC

© ABLIC Inc., 2019-2020 Rev.1.2 00

This IC, developed by CMOS technology, is a high-accuracy Hall effect switch IC that operates with high temperature and high-withstand voltage.

The output voltage level changes when this IC detects the intensity level of magnetic flux density. Using this IC with a magnet makes it possible to detect the open / close in various devices.

ABLIC Inc. offers a "magnetic simulation service" that provides the ideal combination of magnets and our Hall effect ICs for customer systems. Our magnetic simulation service will reduce prototype production, development period and development costs. In addition, it will contribute to optimization of parts to realize high cost performance.

For more information regarding our magnetic simulation service, contact our sales representatives.

■ Features

- Uses a thin (t0.80 mm max.) TSOT-23-3S or ultra-thin (t0.50 mm max.) HSNT-6(2025) package, contributing to the enhancement of the designs of devices
- Contributes to accurate mechanism operation with high-accuracy magnetic characteristics (Refer to "■ Magnetic Characteristics" for details.)
- Contributes to device safe design with a built-in output current limit circuit

■ Specifications ■ Applications

• Pole detection: Unipolar detection

• Output logic*1: Active "L" • Housing equipment

Active "H" • Industrial equipment

• Output form*1: Nch open-drain output

Nch driver + built-in pull-up resistor (1.2 k Ω typ.)

• Magnetic sensitivity*1: $B_{OP} = 3.0 \text{ mT typ.}$ $B_{OP} = 6.0 \text{ mT typ.}$

Bop = 6.0 mT typ.

Bop = 10.0 mT typ.

• TSOT-23-3S

• HSNT-6(2025)

• Chopping frequency: $f_C = 500 \text{ kHz typ.}$ • Output delay time: $t_D = 8.0 \mu \text{s typ.}$ • Power supply voltage range*2: $V_{DD} = 2.7 \text{ V to } 26.0 \text{ V}$

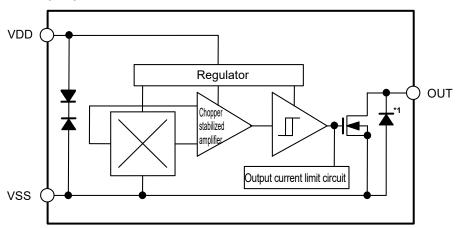
• Built-in regulator

• Built-in output current limit circuit

• Operation temperature range: Ta = -40°C to +125°C

• Lead-free (Sn 100%), halogen-free

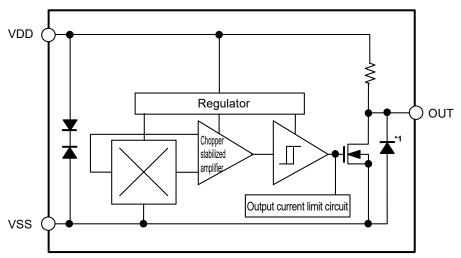
*1. The option can be selected.


*2. V_{DD} = 2.7 V to 5.5 V when output form is Nch driver + built-in pull-up resistor (1.2 k Ω typ.)

ABLIC Inc.

1

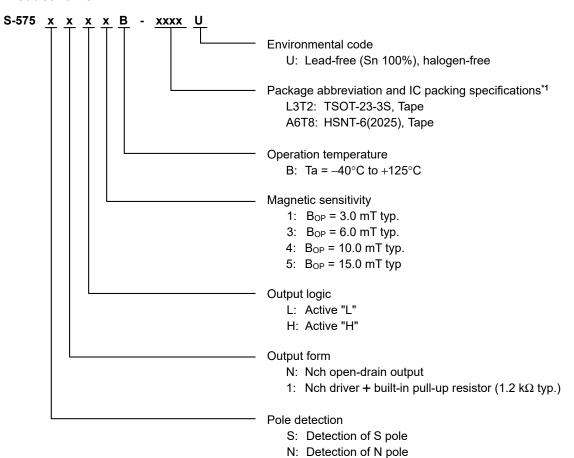
■ Block Diagrams


1. Nch open-drain output product

*1. Parasitic diode

Figure 1

2. Nch driver + built-in pull-up resistor product


*1. Parasitic diode

2

Figure 2

■ Product Name Structure

1. Product name

^{*1.} Refer to the tape drawing.

2. Packages

Table 1 Package Drawing Codes

Package Name	Dimension	Tape	Reel	Land	Stencil Opening
TSOT-23-3S	MP003-E-P-SD	MP003-E-C-SD	MP003-E-R-SD	_	_
HSNT-6(2025)	PJ006-B-P-SD	PJ006-B-C-SD	PJ006-B-R-SD	PJ006-B-LM-SD	PJ006-B-LM-SD

3. Product name list

3.1 TSOT-23-3S

Table 2

Product Name	Output Form	Power Supply Voltage Range	Pole Detection	Output Logic	Magnetic Sensitivity (B _{OP})
S-575SNL3B-L3T2U	Nch open-drain output	V _{DD} = 2.7 V to 26.0 V	S pole	Active "L"	6.0 mT typ.
S-575NNL3B-L3T2U	Nch open-drain output	$V_{DD} = 2.7 \text{ V to } 26.0 \text{ V}$	N pole	Active "L"	6.0 mT typ.

Remark Please contact our sales representatives for products other than the above.

3. 2 HSNT-6(2025)

Table 3

Product Name	Output Form	Power Supply Voltage Range	Pole Detection	Output Logic	Magnetic Sensitivity (Bop)
S-575SNL3B-A6T8U	Nch open-drain output	V _{DD} = 2.7 V to 26.0 V	S pole	Active "L"	6.0 mT typ.
S-575NNL3B-A6T8U	Nch open-drain output	$V_{DD} = 2.7 \text{ V to } 26.0 \text{ V}$	N pole	Active "L"	6.0 mT typ.

Remark Please contact our sales representatives for products other than the above.

■ Pin Configurations

1. TSOT-23-3S

Top view

Figure 3

Table 4

Pin No.	Symbol	Description
1	VSS	GND pin
2	VDD	Power supply pin
3	OUT	Output pin

2. HSNT-6(2025)

Top view

Bottom view

Figure 4

Table 5

Pin No.	Symbol	Description
1	VDD	Power supply pin
2	NC*2	No connection
3	OUT	Output pin
4	NC*2	No connection
5	VSS	GND pin
6	NC*2	No connection

- ***1.** Connect the heatsink of backside at shadowed area to the board, and set electric potential open or GND. However, do not use it as the function of electrode.
- ***2.** The NC pin is electrically open.

 The NC pin can be connected to the VDD pin or the VSS pin.

■ Absolute Maximum Ratings

Table 6

	Item	Symbol	Absolute Maximum Rating	Unit
	Nch open-drain output product		$V_{SS} - 0.3$ to $V_{SS} + 28.0$	V
Power supply voltage	Nch driver + built-in pull-up resistor (1.2 k Ω typ.) product	V _{DD}	Vss - 0.3 to Vss + 9.0	٧
Power supply current		I _{DD}	±10	mA
Output current		Іоит	±10	mA
	Nch open-drain output product		$V_{SS} - 0.3$ to $V_{SS} + 28.0$	V
Output voltage	Nch driver + built-in pull-up resistor (1.2 k Ω typ.) product	V _{оит}	Vss - 0.3 to V _{DD} + 0.3	V
Operation ambient temperature		T _{opr}	-40 to +125	°C
Storage temperature		T _{stg}	-40 to +150	°C

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

■ Thermal Resistance Value

Table 7

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
			Board A	_	225	-	°C/W
			Board B	_	190	1	°C/W
		TSOT-23-3S Board C - Board D -	Board C	_	I	1	°C/W
			_	-	_	°C/W	
Junction-to-ambient thermal resistance*1	0		Board E	_	-	_	°C/W
Junction-to-ambient thermal resistance	θја		Board A	_	180	_	°C/W
			Board B	_	128	_	°C/W
		HSNT-6(2025)	Board C	_	43	_	°C/W
			Board D	_	44	_	°C/W
			Board E	_	36	_	°C/W

^{*1.} Test environment: compliance with JEDEC STANDARD JESD51-2A

Remark Refer to "■ **Power Dissipation**" and "**Test Board**" for details.

■ Electrical Characteristics

1. Nch open-drain output product

Table 8

(Ta = +25°C, V_{DD} = 12.0 V, V_{SS} = 0 V unless otherwise specified)

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Power supply voltage	V_{DD}	_	2.7	12.0	26.0	V	-
Current consumption	I _{DD}	_	_	4.0	4.5	mA	1
Low level output voltage	Vol	Іоит = 5 mA, Vоит = "L"	_	_	0.4	V	2
Leakage current	ILEAK	V _{OUT} = "H"	_	_	1.0	μΑ	3
Output limit current	Іом	V _{OUT} = 12.0 V	11	_	35	mA	3
Output delay time*1	t _D	_	_	8	16	μs	_
Chopping frequency*1	fc	_	250	500	_	kHz	_
Start up time*1	t _{PON}	_	_	25	40	μs	4
Output rise time*1	t _R	C = 20 pF, R = 820 Ω	_	_	1.0	μs	5
Output fall time*1	t _F	C = 20 pF, R = 820 Ω	_	_	1.0	μs	5

^{*1.} This item is guaranteed by design.

2. Nch driver + built-in pull-up resistor (1.2 k Ω typ.) product

Table 9

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Power supply voltage	V_{DD}	-	2.7	5.0	5.5	V	_
Current consumption	I _{DD}	V _{OUT} = "H"	_	4.0	4.5	mA	1
Low level output voltage	VoL	I _{OUT} = 0 mA, V _{OUT} = "L"	_	_	0.4	V	2
High level output voltage	V _{OH}	I _{OUT} = 0 mA, V _{OUT} = "H"	$V_{DD}\!\times\!0.9$	_	_	V	2
Output limit current	Іом	$V_{DD} = V_{OUT} = 5.0 \text{ V}$	11	_	35	mA	3
Output delay time*1	t _D	I	_	8	16	μs	_
Chopping frequency*1	fc	ı	250	500	_	kHz	_
Start up time*1	t _{PON}	П	_	25	40	μs	4
Output rise time*1	t _R	C = 20 pF	_	_	1.0	μs	5
Output fall time*1	t _F	C = 20 pF	_	_	1.0	μs	5
Pull-up resistor	RL	I	0.9	1.2	1.5	kΩ	_

^{*1.} This item is guaranteed by design.

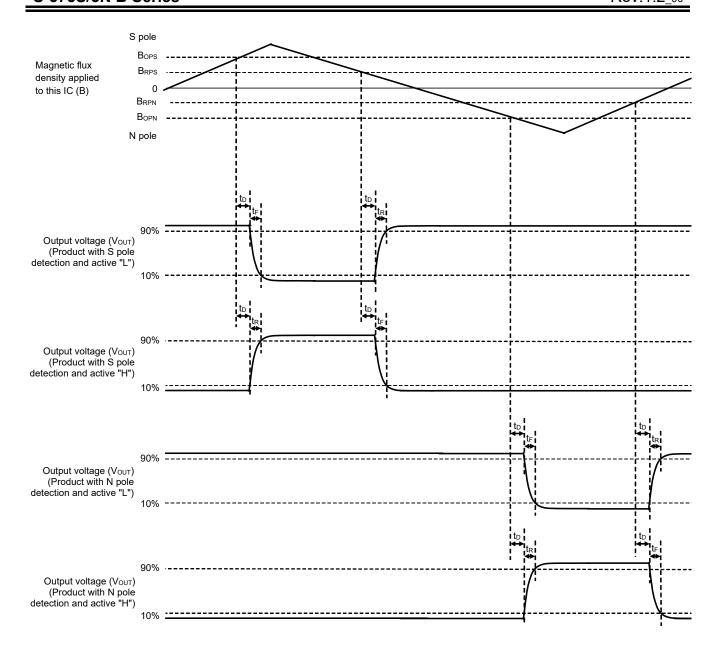


Figure 5 Operation Timing

■ Magnetic Characteristics

1. TSOT-23-3S

1. 1 Product with S pole detection

1. 1. 1 $B_{OP} = 3.0 \text{ mT typ.}$

Table 10

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	Bops	_	2.0	3.0	4.3	mT	4
Release point*2	S pole	B _{RPS}	_	1.2	2.2	3.2	mT	4
Hysteresis width*3	S pole	B _{HYSS}	B _H YSS = B _{OPS} - B _{RPS}	_	0.8	_	mT	4

1. 1. 2 $B_{OP} = 6.0 \text{ mT typ.}$

Table 11

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item	Item Symbol (Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	-	4.0	6.0	8.0	mT	4
Release point*2	S pole	B _{RPS}	_	3.0	4.5	6.0	mT	4
Hysteresis width*3	S pole	B _{HYSS}	B _{HYSS} = B _{OPS} - B _{RPS}	1	1.5	1	mT	4

1. 1. 3 $B_{OP} = 10.0 \text{ mT typ.}$

Table 12

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	Bops	_	7.2	10.0	12.6	mT	4
Release point*2	S pole	B _{RPS}	_	5.2	7.5	9.8	mT	4
Hysteresis width*3	S pole	B _{HYSS}	B _H YSS = B _{OPS} - B _{RPS}	_	2.5	_	mT	4

1. 1. 4 $B_{OP} = 15.0 \text{ mT typ.}$

Table 13

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	_	11.2	15.0	19.2	mT	4
Release point*2	S pole	B _{RPS}	_	8.4	12.0	15.0	mT	4
Hysteresis width*3	S pole	B _{HYSS}	B _{HYSS} = B _{OPS} - B _{RPS}	_	3.0	_	mT	4

1. 2 Product with N pole detection

1. 2. 1 $B_{OP} = 3.0 \text{ mT typ.}$

Table 14

(Ta = $\pm 25^{\circ}$ C, $V_{DD} = 5.0$ V, $V_{SS} = 0$ V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	Bopn	_	-4.3	-3.0	-2.0	mT	4
Release point*2	N pole	B _{RPN}	_	-3.2	-2.2	-1.2	mT	4
Hysteresis width*3	N pole	BHYSN	BHYSN = BOPN - BRPN	ı	0.8	ı	mT	4

1. 2. 2 $B_{OP} = 6.0 \text{ mT typ.}$

Table 15

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	Bopn	_	-8.0	-6.0	-4.0	mT	4
Release point*2	N pole	B _{RPN}	_	-6.0	-4.5	-3.0	mT	4
Hysteresis width*3	N pole	BHYSN	BHYSN = BOPN - BRPN	_	1.5	_	mT	4

1. 2. 3 $B_{OP} = 10.0 \text{ mT typ.}$

Table 16

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	Bopn	-	-12.6	-10.0	-7.2	mT	4
Release point*2	N pole	B _{RPN}	_	-9.8	-7.5	-5.2	mT	4
Hysteresis width*3	N pole	BHYSN	BHYSN = BOPN - BRPN	_	2.5	_	mT	4

1. 2. 4 $B_{OP} = 15.0 \text{ mT typ.}$

Table 17

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

			,		-			
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	Bopn	_	-19.2	-15.0	-11.2	mT	4
Release point*2	N pole	B _{RPN}	_	-15.0	-12.0	-8.4	mT	4
Hysteresis width*3	N pole	BHYSN	BHYSN = BOPN - BRPN	_	3.0	1	mT	4

*1. BOPN, BOPS: Operation points

 B_{OPN} and B_{OPS} are the values of magnetic flux density when the output voltage (V_{OUT}) changes after the magnetic flux density applied to this IC by the magnet (N pole or S pole) is increased (by moving the magnet closer). Even when the magnetic flux density exceeds B_{OPN} or B_{OPS} , V_{OUT} retains the status.

***2.** B_{RPN}, B_{RPS}: Release points

10

 B_{RPN} and B_{RPS} are the values of magnetic flux density when the output voltage (V_{OUT}) changes after the magnetic flux density applied to this IC by the magnet (N pole or S pole) is decreased (the magnet is moved further away). Even when the magnetic flux density falls below B_{RPN} or B_{RPS} , V_{OUT} retains the status.

*3. BHYSN, BHYSS: Hysteresis widths

BHYSN and BHYSS are the difference between BOPN and BRPN, and BOPS and BRPS, respectively.

Remark The unit of magnetic density mT can be converted by using the formula 1 mT = 10 Gauss.

2. HSNT-6(2025)

2. 1 Product with S pole detection

2. 1. 1 $B_{OP} = 3.0 \text{ mT typ.}$

Table 18

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	Bops	_	1.7	3.0	4.7	mT	4
Release point*2	S pole	B _{RPS}	_	0.7	2.2	3.6	mT	4
Hysteresis width*3	S pole	B _{HYSS}	B _H YSS = B _O PS - B _R PS	1	0.8	-	mT	4

2. 1. 2 $B_{OP} = 6.0 \text{ mT typ.}$

Table 19

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	Bops	_	3.7	6.0	8.3	mT	4
Release point*2	S pole	B _{RPS}	_	2.5	4.5	6.5	mT	4
Hysteresis width*3	S pole	B _{HYSS}	B _H YSS = B _{OPS} - B _{RPS}	_	1.5	-	mT	4

2. 1. 3 $B_{OP} = 10.0 \text{ mT typ.}$

Table 20

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	Bops	_	7.4	10.0	13.1	mT	4
Release point*2	S pole	B _{RPS}	_	5.1	7.5	10.1	mT	4
Hysteresis width*3	S pole	B _H YSS	B _H YSS = B _O PS - B _R PS	1	2.5	1	mT	4

2. 1. 4 $B_{OP} = 15.0 \text{ mT typ.}$

Table 21

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	Bops	_	10.6	15.0	19.9	mT	4
Release point*2	S pole	B _{RPS}	_	8.1	12.0	15.8	mT	4
Hysteresis width*3	S pole	B _{HYSS}	B _H YSS = B _O PS - B _R PS	_	3.0	1	mT	4

2. 2 Product with N pole detection

2. 2. 1 $B_{OP} = 3.0 \text{ mT typ.}$

Table 22

(Ta = ± 25 °C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	Bopn	_	-4.7	-3.0	-1.7	mT	4
Release point*2	N pole	B _{RPN}	_	-3.6	-2.2	-0.7	mT	4
Hysteresis width*3	N pole	BHYSN	BHYSN = BOPN - BRPN	ı	0.8	ı	mT	4

2. 2. 2 $B_{OP} = 6.0 \text{ mT typ.}$

Table 23

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	Bopn	_	-8.3	-6.0	-3.7	mT	4
Release point*2	N pole	B _{RPN}	_	-6.5	-4.5	-2.5	mT	4
Hysteresis width*3	N pole	BHYSN	BHYSN = BOPN - BRPN	_	1.5	_	mT	4

2. 2. 3 $B_{OP} = 10.0 \text{ mT typ.}$

Table 24

(Ta = ± 25 °C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	Bopn	_	-13.1	-10.0	-7.4	mT	4
Release point*2	N pole	B _{RPN}	_	-10.1	-7.5	-5.1	mT	4
Hysteresis width*3	N pole	BHYSN	BHYSN = BOPN - BRPN	1	2.5	1	mT	4

2. 2. 4 $B_{OP} = 15.0 \text{ mT typ.}$

Table 25

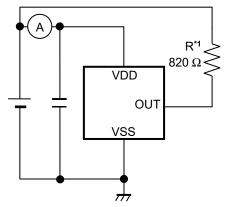
(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

			, -	-,	- ,			
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	Bopn	_	-19.9	-15.0	-10.6	mT	4
Release point*2	N pole	B _{RPN}	_	-15.8	-12.0	-8.1	mT	4
Hysteresis width*3	N pole	BHYSN	B _H YSN = B _{OPN} - B _{RPN}	-	3.0	_	mT	4

*1. BOPN, BOPS: Operation points

Bopn and Bops are the values of magnetic flux density when the output voltage (Vout) changes after the magnetic flux density applied to this IC by the magnet (N pole or S pole) is increased (by moving the magnet closer). Even when the magnetic flux density exceeds Bopn or Bops, Vout retains the status.

***2.** B_{RPN}, B_{RPS}: Release points


 B_{RPN} and B_{RPS} are the values of magnetic flux density when the output voltage (V_{OUT}) changes after the magnetic flux density applied to this IC by the magnet (N pole or S pole) is decreased (the magnet is moved further away). Even when the magnetic flux density falls below B_{RPN} or B_{RPS} , V_{OUT} retains the status.

*3. BHYSN, BHYSS: Hysteresis widths

B_{HYSN} and B_{HYSS} are the difference between B_{OPN} and B_{RPN}, and B_{OPS} and B_{RPS}, respectively.

Remark The unit of magnetic density mT can be converted by using the formula 1 mT = 10 Gauss.

■ Test Circuits

*1. Resistor (R) is unnecessary for Nch driver + built-in pull-up resistor product.

Figure 6 Test Circuit 1

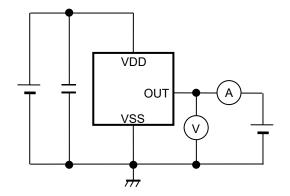
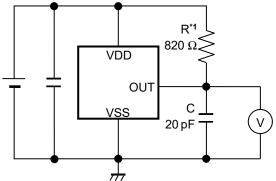
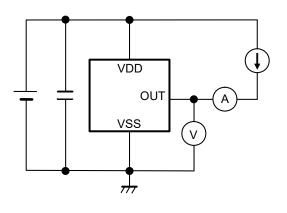
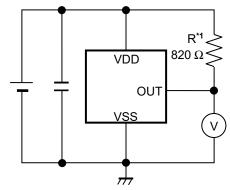
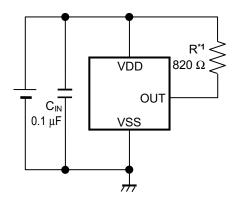



Figure 8 Test Circuit 3

*1. Resistor (R) is unnecessary for Nch driver + built-in pull-up resistor product.

Figure 10 Test Circuit 5


Figure 7 Test Circuit 2

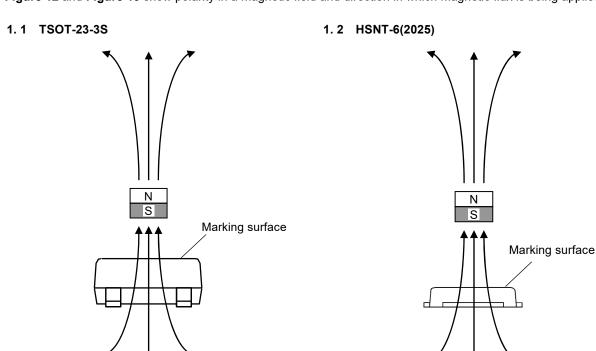
*1. Resistor (R) is unnecessary for Nch driver + built-in pull-up resistor product.

Figure 9 Test Circuit 4

■ Standard Circuit

*1. Resistor (R) is unnecessary for Nch driver + built-in pull-up resistor product.

Figure 11


Caution The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation using the actual application to set the constants.

■ Operation

1. Direction of applied magnetic flux

This IC detects the magnetic flux density which is perpendicular to the package marking surface. A magnetic field is defined as positive when marking side of the package is the S pole, and negative when it is the N pole.

Figure 12 and Figure 13 show polarity in a magnetic field and direction in which magnetic flux is being applied.

2. Position of Hall sensor

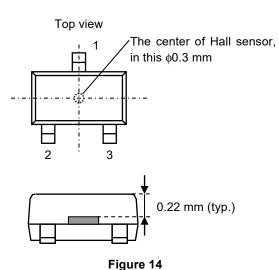

Figure 14 and Figure 15 show the position of Hall sensor.

Figure 12

The center of this Hall sensor is located in the area indicated by a circle, which is in the center of a package as described below.

The following also shows the distance (typ. value) between the marking surface and the chip surface of a package.

2. 1 TSOT-23-3S

2. 2 HSNT-6(2025)

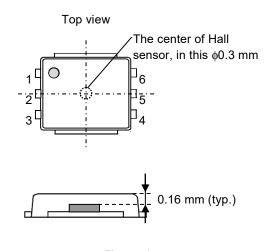


Figure 13

Figure 15

3. Basic operation

This IC changes the output voltage (V_{OUT}) according to the level of the magnetic flux density (N pole or S pole) applied by a magnet.

3. 1 Product with S pole detection

3. 1. 1 Active "L"

When the magnetic flux density of the S pole perpendicular to the marking surface exceeds the operation point (Bops) after the S pole of a magnet is moved closer to the marking surface of this IC, Vout changes from "H" to "L". When the S pole of a magnet is moved further away from the marking surface of this IC and the magnetic flux density is lower than the release point (Brps), Vout changes from "L" to "H".

Figure 16 shows the relationship between the magnetic flux density and V_{OUT}.

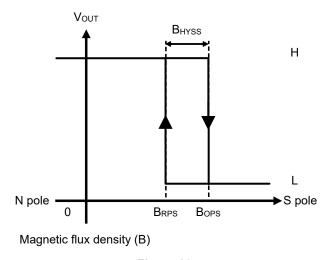


Figure 16

3. 1. 2 Active "H"

When the magnetic flux density of the S pole perpendicular to the marking surface exceeds the operation point (BoPs) after the S pole of a magnet is moved closer to the marking surface of this IC, Vout changes from "L" to "H". When the S pole of a magnet is moved further away from the marking surface of this IC and the magnetic flux density is lower than the release point (BRPS), Vout changes from "H" to "L".

Figure 17 shows the relationship between the magnetic flux density and Vout.

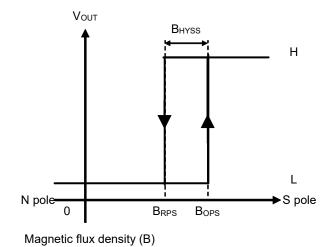
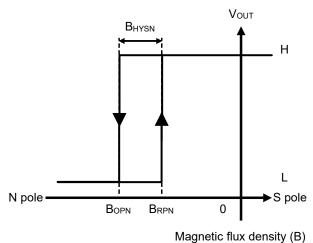


Figure 17


16 ABLIC Inc.

3. 2 Product with N pole detection

3. 2. 1 Active "L"

When the magnetic flux density of the N pole perpendicular to the marking surface exceeds the operation point (Bopn) after the N pole of a magnet is moved closer to the marking surface of this IC, Vout changes from "H" to "L". When the N pole of a magnet is moved further away from the marking surface of this IC and the magnetic flux density of the N pole is lower than the release point (Brpn), Vout changes from "L" to "H".

Figure 18 shows the relationship between the magnetic flux density and Vout.

magnotio nan ac

Figure 18

3. 2. 2 Active "H"

When the magnetic flux density of the N pole perpendicular to the marking surface exceeds the operation point (B_{OPN}) after the N pole of a magnet is moved closer to the marking surface of this IC, V_{OUT} changes from "L" to "H". When the N pole of a magnet is moved further away from the marking surface of this IC and the magnetic flux density of the N pole is lower than the release point (B_{RPN}), V_{OUT} changes from "H" to "L".

Figure 19 shows the relationship between the magnetic flux density and Vout.

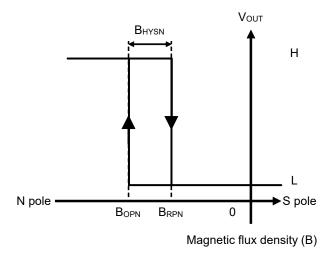


Figure 19

4. Power-on operation

The output voltage (V_{OUT}) of this IC immediately after power-on is "H". After the start up time (t_{PON}) is passed, the IC changes V_{OUT} according to the level of the magnetic flux density (N pole or S pole) applied by a magnet.

4. 1 Product with S pole detection

4. 1. 1 Active "L"

Figure 20 shows the timing chart at power-on for active "L" product.

The initial output voltage at rising of power supply voltage (VDD) is "H".

In case of B > Bops at the time when thon is passed after rising of VDD, VOUT changes from "H" to "L".

In case of B < Bops at the time when tpon is passed after rising of V_{DD}, V_{OUT} retains "H".

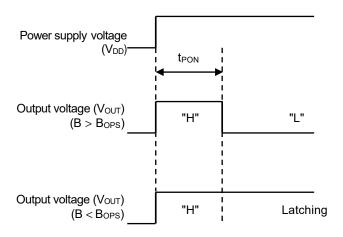


Figure 20

4. 1. 2 Active "H"

Figure 21 shows the timing chart at power-on for active "H" product.

The initial output voltage at rising of power supply voltage (V_{DD}) is "H".

In case of B > B_{OPS} at the time when t_{PON} is passed after rising of V_{DD} , V_{OUT} retains "H".

In case of B < Bops at the time when tpon is passed after rising of VDD, VouT changes from "H" to "L".

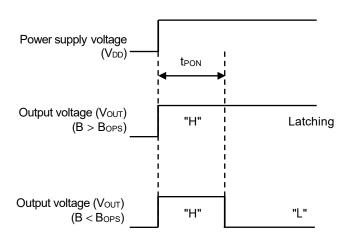


Figure 21

18 ABLIC Inc.

4. 2 Product with N pole detection

4. 2. 1 Active "L"

Figure 22 shows the timing chart at power-on for active "L" product.

The initial output voltage at rising of power supply voltage (V_{DD}) is "H".

In case of B < B_{OPN} at the time when t_{PON} is passed after rising of V_{DD}, V_{OUT} changes from "H" to "L".

In case of B > B_{OPN} at the time when t_{PON} is passed after rising of V_{DD} , V_{OUT} retains "H".

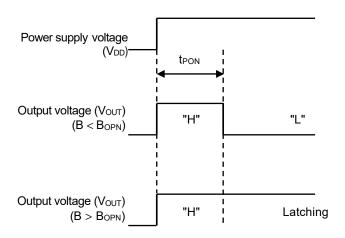


Figure 22

4. 2. 2 Active "H"

Figure 23 shows the timing chart at power-on for active "H" product.

The initial output voltage at rising of power supply voltage (VDD) is "H".

In case of B < Bopn at the time when tpon is passed after rising of VDD, VOUT retains "H".

In case of B > Bopn at the time when tpon is passed after rising of VDD, VOUT changes from "H" to "L".

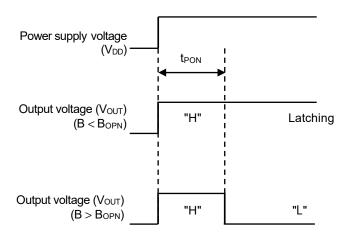
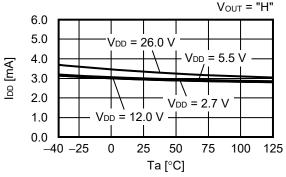
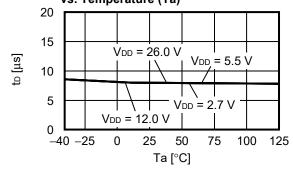


Figure 23

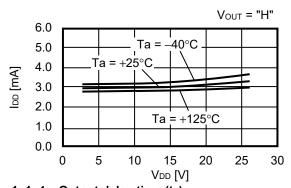
■ Precautions

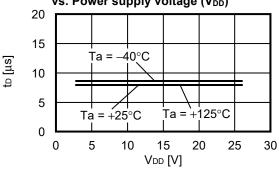

- If the impedance of the power supply is high, the IC may malfunction due to a supply voltage drop caused by feed-through current. Take care with the pattern wiring to ensure that the impedance of the power supply is low.
- Note that the IC may malfunction if the power supply voltage rapidly changes. When the IC is used under the
 environment where the power supply voltage rapidly changes, it is recommended to judge the output voltage of
 the IC by reading it multiple times.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- Note that the output voltage may rarely change if the magnetic flux density between the operation point and the release point is applied to this IC continuously for a long time.
- Although this IC has a built-in output current limit circuit, it may suffer physical damage such as product deterioration under the environment where the absolute maximum ratings are exceeded.
- The application conditions for the power supply voltage, the pull-up voltage, and the pull-up resistor should not exceed the power dissipation.
- Large stress on this IC may affect the magnetic characteristics. Avoid large stress which is caused by the handling during or after mounting the IC on a board.
- Since the package heat radiation differs according to the conditions of the application, perform thorough evaluation with actual applications to confirm no problems occur.
- ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.

■ Characteristics (Typical Data)

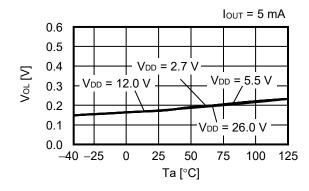

1. Electrical Characteristics

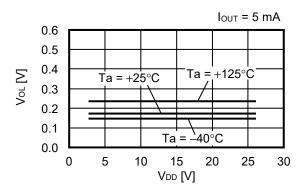
1. 1 S-575SxxxB, S-575NxxxB


1. 1. 1 Current consumption (I_{DD}) vs. Temperature (Ta)


1. 1. 3 Output delay time (t_D) vs. Temperature (Ta)

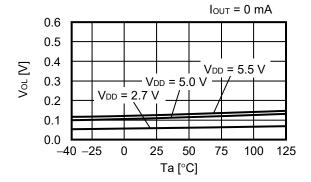
1. 1. 2 Current consumption (I_{DD}) vs. Power supply voltage (V_{DD})


1. 1. 4 Output delay time (t_D) vs. Power supply voltage (V_{DD})

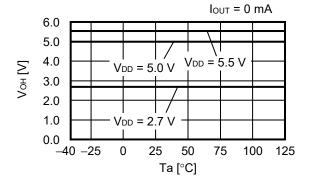

Caution V_{DD} = 2.7 V to 5.5 V when output form is Nch driver + built-in pull-up resistor (1.2 k Ω typ.). Comply with power supply voltage range and do not exceed absolute maximum ratings.

1. 2 S-575SNxxB, S-575NNxxB

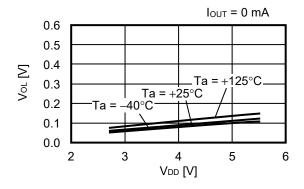
1. 2. 1 Low level output voltage (V_{OL}) vs. Temperature (Ta)

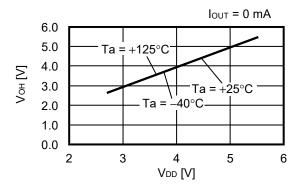


1. 2. 2 Low level output voltage (V_{OL}) vs. Power supply voltage (V_{DD})

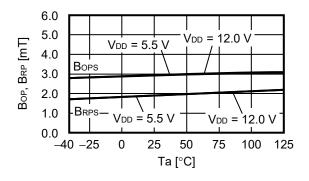


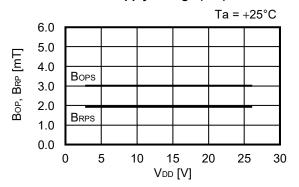
1. 3 S-575S1xxB, S-575N1xxB


1. 3. 1 Low level output voltage (V_{OL}) vs. Temperature (Ta)


1. 3. 3 High level output voltage (Vон) vs. Temperature (Та)

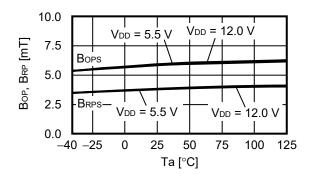
1. 3. 2 Low level output voltage (V_{OL}) vs. Power supply voltage (V_{DD})


1. 3. 4 High level output voltage (V_{OH}) vs. Power supply voltage (V_{DD})

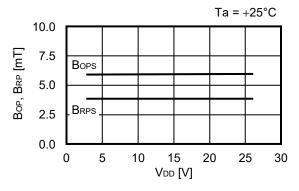

2. Magnetic Characteristics

2. 1 S-575Sxx1B-L3T2U

2. 1. 1 Operation point, release point (B_{OP}, B_{RP}) vs. Temperature (Ta)

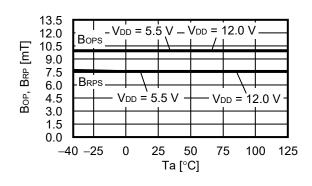


2. 1. 2 Operation point, release point (B_{OP} , B_{RP}) vs. Power supply voltage (V_{DD})



2. 2 S-575Sxx3B-L3T2U

2. 2. 1 Operation point, release point (B_{OP} , B_{RP}) vs. Temperature (Ta)

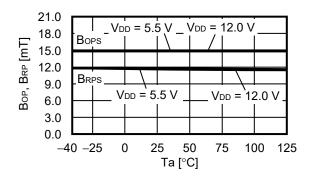


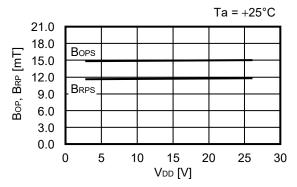
2. 2. 2 Operation point, release point (Bop, Brp) vs. Power supply voltage (VDD)



2. 3 S-575Sxx4B-L3T2U

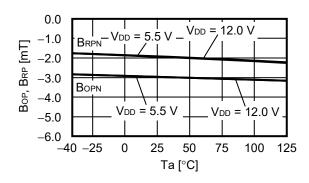
2. 3. 1 Operation point, release point (B_{OP} , B_{RP}) vs. Temperature (Ta)


2. 3. 2 Operation point, release point (B_{OP} , B_{RP}) vs. Power supply voltage (V_{DD})

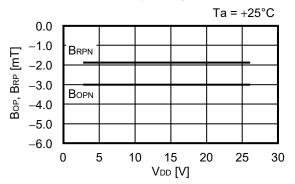

Caution V_{DD} = 2.7 V to 5.5 V when output form is Nch driver + built-in pull-up resistor (1.2 k Ω typ.). Comply with power supply voltage range and do not exceed absolute maximum ratings.

2. 4 S-575Sxx5B-L3T2U

2. 4. 1 Operation point, release point (B_{OP}, B_{RP}) vs. Temperature (Ta)

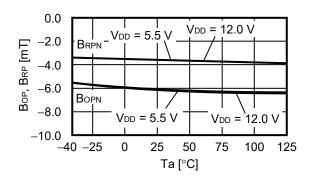


2. 4. 2 Operation point, release point (B_{OP}, B_{RP}) vs. Power supply voltage (V_{DD})

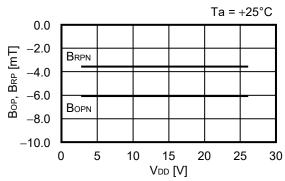


2. 5 S-575Nxx1B-L3T2U

2. 5. 1 Operation point, release point (Bop, BRP) vs. Temperature (Ta)



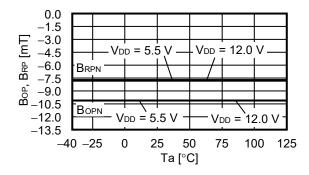
2. 5. 2 Operation point, release point (Bop, BRP) vs. Power supply voltage (VDD)



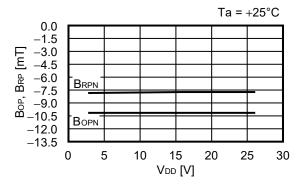
2. 6 S-575Nxx3B-L3T2U

2. 6. 1 Operation point, release point (Bop, Brp) vs. Temperature (Ta)

2. 6. 2 Operation point, release point (Bop, BRP) vs. Power supply voltage (VDD)

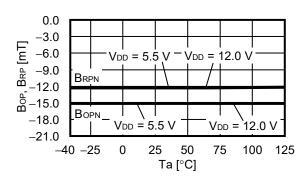


Caution $V_{DD} = 2.7 \text{ V}$ to 5.5 V when output form is Nch driver + built-in pull-up resistor (1.2 k Ω typ.). Comply with power supply voltage range and do not exceed absolute maximum ratings.

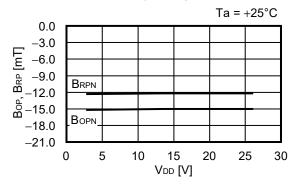

24 ABLIC Inc.

2. 7 S-575Nxx4B-L3T2U

2. 7. 1 Operation point, release point (B_{OP}, B_{RP}) vs. Temperature (Ta)

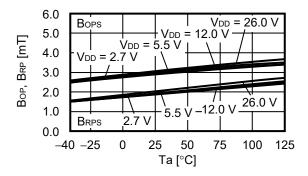


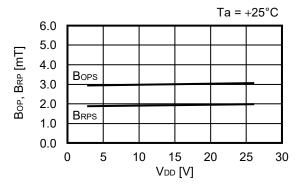
2. 7. 2 Operation point, release point (B_{OP} , B_{RP}) vs. Power supply voltage (V_{DD})



2. 8 S-575Nxx5B-L3T2U

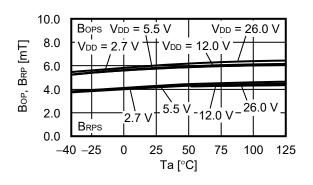
2. 8. 1 Operation point, release point (Bop, Brp) vs. Temperature (Ta)


2. 8. 2 Operation point, release point (Bop, Brp) vs. Power supply voltage (VDD)

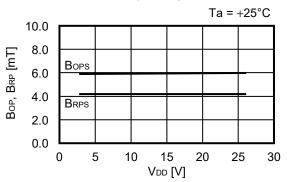

Caution V_{DD} = 2.7 V to 5.5 V when output form is Nch driver + built-in pull-up resistor (1.2 k Ω typ.). Comply with power supply voltage range and do not exceed absolute maximum ratings.

2. 9 S-575Sxx1B-A6T8U

2. 9. 1 Operation point, release point (B_{OP}, B_{RP}) vs. Temperature (Ta)



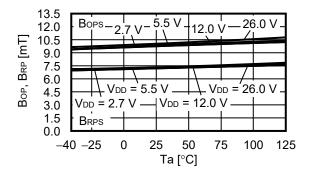
2. 9. 2 Operation point, release point (B_{OP}, B_{RP}) vs. Power supply voltage (V_{DD})



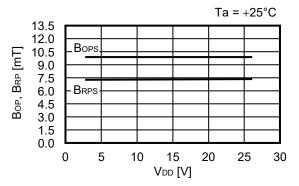
2. 10 S-575Sxx3B-A6T8U

2. 10. 1 Operation point, release point (Bop, BRP) vs. Temperature (Ta)

2. 10. 2 Operation point, release point (Bop, Brp) vs. Power supply voltage (VDD)

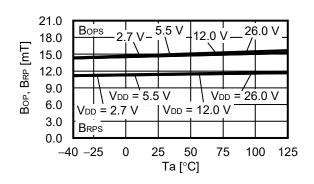


Caution V_{DD} = 2.7 V to 5.5 V when output form is Nch driver + built-in pull-up resistor (1.2 k Ω typ.). Comply with power supply voltage range and do not exceed absolute maximum ratings.

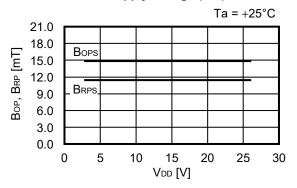

26 ABLIC Inc.

2. 11 S-575Sxx4B-A6T8U

2. 11. 1 Operation point, release point (B_{OP}, B_{RP}) vs. Temperature (Ta)

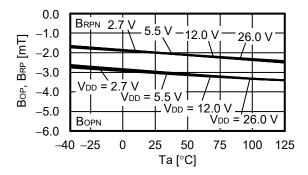


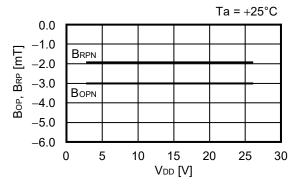
2. 11. 2 Operation point, release point (B_{OP} , B_{RP}) vs. Power supply voltage (V_{DD})



2. 12 S-575Sxx5B-A6T8U

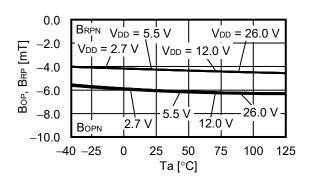
2. 12. 1 Operation point, release point (Bop, BRP) vs. Temperature (Ta)


2. 12. 2 Operation point, release point (B_{OP} , B_{RP}) vs. Power supply voltage (V_{DD})

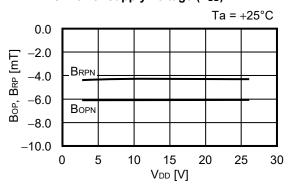

Caution $V_{DD} = 2.7 \text{ V}$ to 5.5 V when output form is Nch driver + built-in pull-up resistor (1.2 k Ω typ.). Comply with power supply voltage range and do not exceed absolute maximum ratings.

2. 13 S-575Nxx1B-A6T8U

2. 13. 1 Operation point, release point (B_{OP}, B_{RP}) vs. Temperature (Ta)



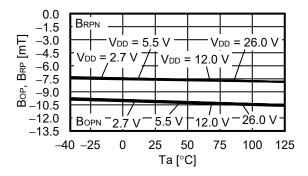
2. 13. 2 Operation point, release point (B_{OP} , B_{RP}) vs. Power supply voltage (V_{DD})



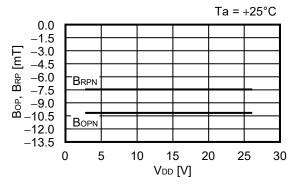
2. 14 S-575Nxx3B-A6T8U

2. 14. 1 Operation point, release point (Bop, Brp) vs. Temperature (Ta)

2. 14. 2 Operation point, release point (Bop, Brp) vs. Power supply voltage (VDD)

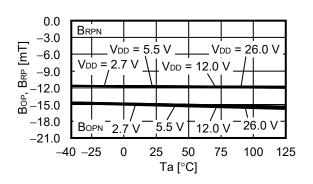


Caution V_{DD} = 2.7 V to 5.5 V when output form is Nch driver + built-in pull-up resistor (1.2 k Ω typ.). Comply with power supply voltage range and do not exceed absolute maximum ratings.

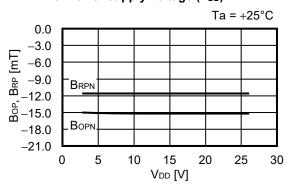

28 ABLIC Inc.

2. 15 S-575Nxx4B-A6T8U

2. 15. 1 Operation point, release point (B_{OP}, B_{RP}) vs. Temperature (Ta)



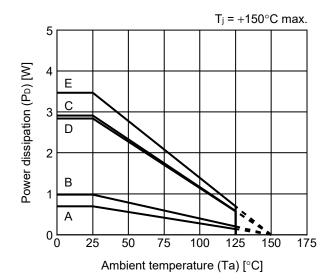
2. 15. 2 Operation point, release point (B_{OP} , B_{RP}) vs. Power supply voltage (V_{DD})



2. 16 S-575Nxx5B-A6T8U

2. 16. 1 Operation point, release point (Bop, BRP) vs. Temperature (Ta)


2. 16. 2 Operation point, release point (B_{OP} , B_{RP}) vs. Power supply voltage (V_{DD})


Caution V_{DD} = 2.7 V to 5.5 V when output form is Nch driver + built-in pull-up resistor (1.2 k Ω typ.). Comply with power supply voltage range and do not exceed absolute maximum ratings.

■ Power Dissipation

TSOT-23-3S

HSNT-6(2025)


Board	Power Dissipation (P _D)
Α	0.56 W
В	0.66 W
С	1
D	1
Е	-


Board	Power Dissipation (P _D)
Α	0.69 W
В	0.98 W
С	2.91 W
D	2.84 W
E	3.47 W

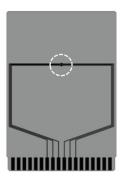
30 ABLIC Inc.

TSOT-23-3S Test Board

(1) Board A

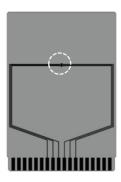
Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		2
	1	Land pattern and wiring for testing: t0.070
Coppor foil layer [mm]	2	-
Copper foil layer [mm]	3	-
	4	74.2 x 74.2 x t0.070
Thermal via		-

(2) Board B

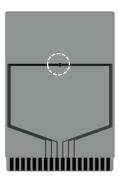

Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil layer		4	
	1	Land pattern and wiring for testing: t0.070	
Copper foil layer [mm]	2	74.2 x 74.2 x t0.035	
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035	
	4	74.2 x 74.2 x t0.070	
Thermal via		-	

No. TSOT23x-A-Board-SD-1.0

HSNT-6(2025) Test Board


O IC Mount Area

(1) Board A

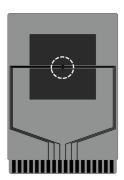

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		2
	1	Land pattern and wiring for testing: t0.070
Coppor foil layer [mm]	2	-
Copper foil layer [mm]	3	-
	4	74.2 x 74.2 x t0.070
Thermal via		-

(2) Board B

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
	1	Land pattern and wiring for testing: t0.070
Copper foil layer [mm]	2	74.2 x 74.2 x t0.035
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

(3) Board C

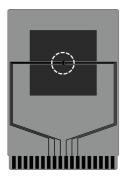
Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
	1	Land pattern and wiring for testing: t0.070
Copper foil layer [mm]	2	74.2 x 74.2 x t0.035
Copper foil layer [min]	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		Number: 4 Diameter: 0.3 mm



No. HSNT6-B-Board-SD-1.0

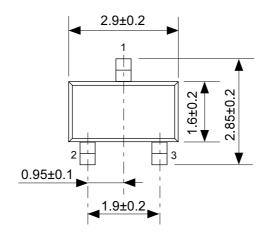
HSNT-6(2025) Test Board

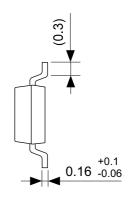
O IC Mount Area

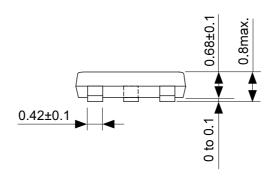

(4) Board D

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
	1	Pattern for heat radiation: 2000mm ² t0.070
Coppor foil lover [mm]	2	74.2 x 74.2 x t0.035
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

(5) Board E

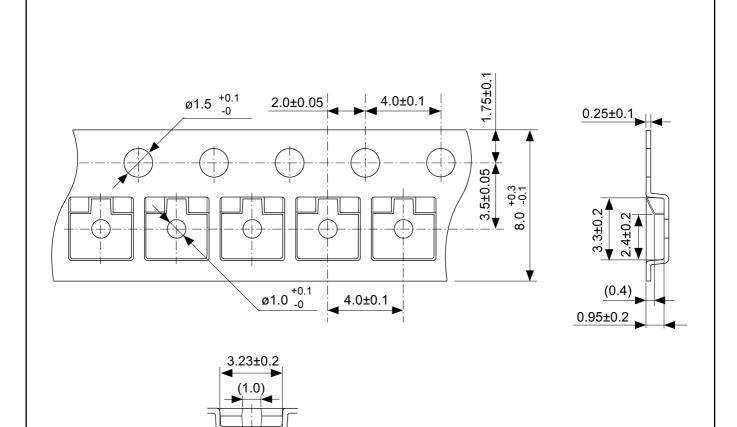


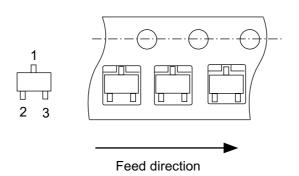

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
	1	Pattern for heat radiation: 2000mm ² t0.070
Copper foil layer [mm]	2	74.2 x 74.2 x t0.035
Copper foil layer [min]	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		Number: 4 Diameter: 0.3 mm



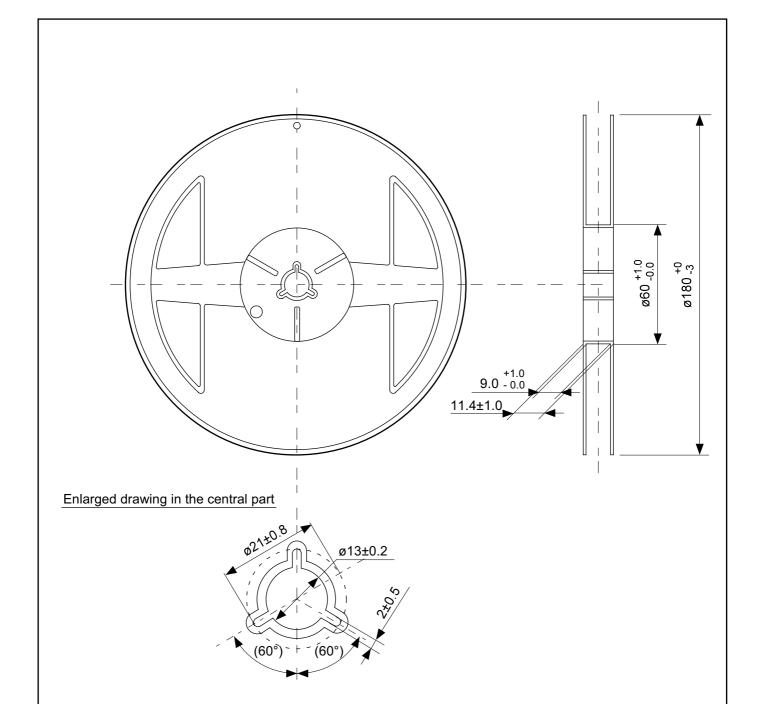
enlarged view

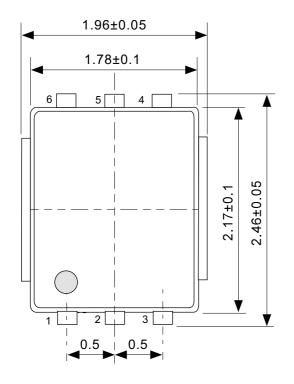
No. HSNT6-B-Board-SD-1.0

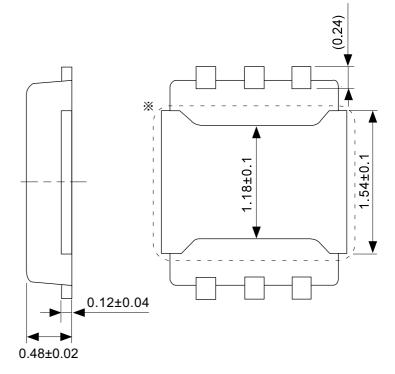


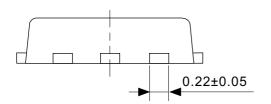


No. MP003-E-P-SD-1.0


TITLE	TSOT233S-A-PKG Dimensions		
No.	MP003-E-P-SD-1.0		
ANGLE	$\bigoplus \Box$		
UNIT	mm		
ABLIC Inc.			

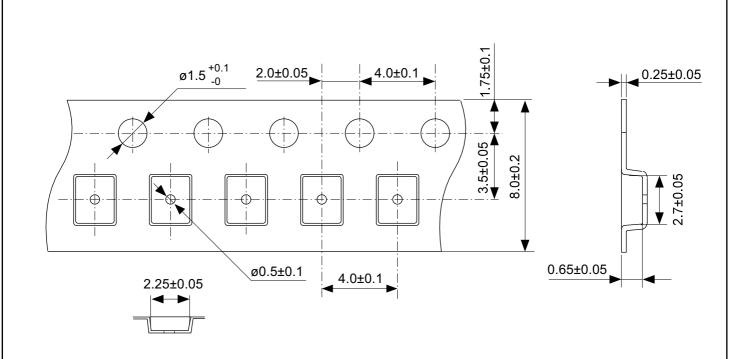

No. MP003-E-C-SD-1.0


TITLE	TSOT233S-A-Carrier Tape		
No.	MP003-E-C-SD-1.0		
ANGLE			
UNIT	mm		
ABLIC Inc.			



No. MP003-E-R-SD-1.0

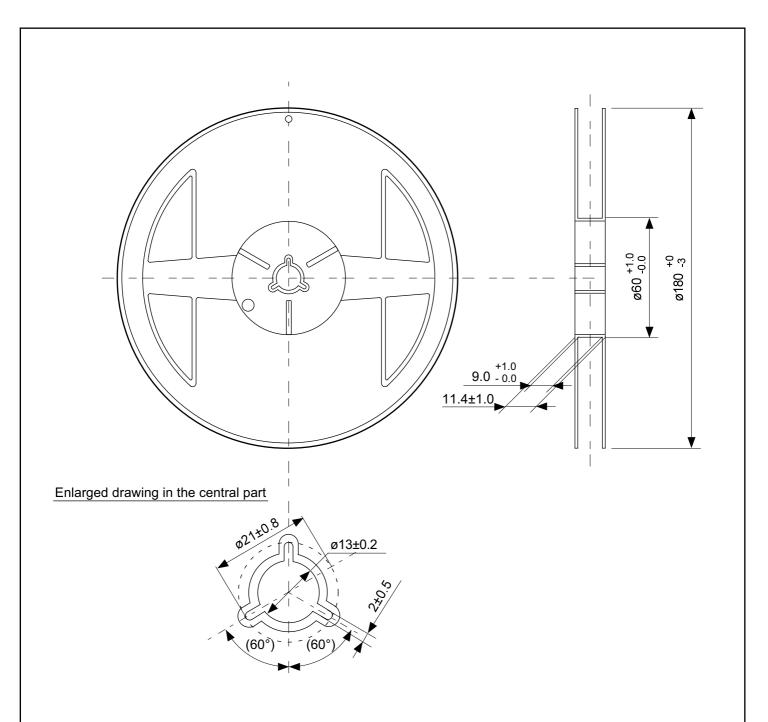
TITLE	TSOT233S-A-Reel			
No.	MP003-E-R-SD-1.0			
ANGLE		QTY.	3,000	
UNIT	mm			
ABLIC Inc.				



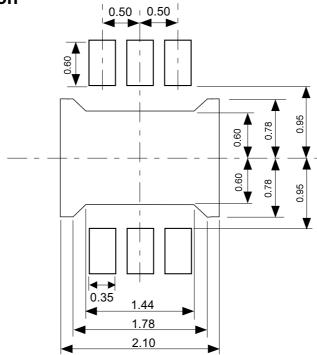


The heat sink of back side has different electric potential depending on the product.
 Confirm specifications of each product.
 Do not use it as the function of electrode.

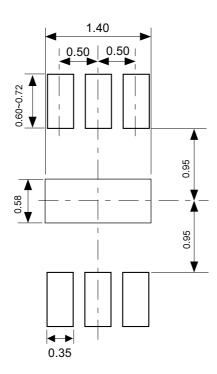
No. PJ006-B-P-SD-1.0


TITLE	HSNT-6-C-PKG Dimensions	
No.	PJ006-B-P-SD-1.0	
ANGLE	⊕ □	
UNIT	mm	
ABLIC Inc.		

No. PJ006-B-C-SD-1.0


TITLE	HSNT-6-C-Carrier Tape	
No.	PJ006-B-C-SD-1.0	
ANGLE		
UNIT	mm	
ABLIC Inc.		

No. PJ006-B-R-SD-1.0


TITLE	HSNT-6-C-Reel			
No.	PJ006-B-R-SD-1.0			
ANGLE		QTY.	5,000	
UNIT	mm			
ABLIC Inc.				

Land Recommendation

Caution It is recommended to solder the heat sink to a board in order to ensure the heat radiation. 注意 放熱性を確保する為に、PKGの裏面放熱板(ヒートシンク)を基板に半田付けする事を推奨いたします。

Stencil Opening

No. PJ006-B-LM-SD-1.0

- Caution ① Mask aperture ratio of the lead mounting part is 100~120%.
 - 2 Mask aperture ratio of the heat sink mounting part is 30%.
 - 3 Mask thickness: t0.12 mm
 - 4 Reflow atmosphere: Nitrogen atmosphere is recommended. (Oxygen concentration: 1000ppm or less)

注意 ①リード実装部のマスク開口率は100~120%です。

- ②放熱板実装のマスク開口率は30%です。
- ③マスク厚み: t0.12 mm
- ④リフロー雰囲気・窒素雰囲気(酸素濃度1000ppm以下)推奨

TITLE	HSNT-6-C -Land &Stencil Opening	
No.	PJ006-B-LM-SD-1.0	
ANGLE		
UNIT	mm	
ABLIC Inc.		

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- 2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.
- 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.
- 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc.
 - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.
- 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments.
 - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.
- 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.
 - The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility.
- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc.
- 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative.
- 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.

