The S-8205A/B Series includes high-accuracy voltage detection circuits and delay circuits, in single use, makes it possible for users to monitor the status of 4-series or 5-series cell lithium-ion rechargeable battery. The S-8205A/B Series is suitable for protecting lithium-ion rechargeable battery pack from overcharge, overdischarge, and overcurrent.

Features

- **High-accuracy voltage detection function for each cell**
 - Overcharge detection voltage \(n (n = 1 \text{ to } 5) \): 3.550 V to 4.500 V^1\ (50 mV step) Accuracy ±25 mV
 - Overcharge release voltage \(n (n = 1 \text{ to } 5) \): 3.300 V to 4.500 V^2\ Accuracy ±50 mV
 - Overdischarge detection voltage \(n (n = 1 \text{ to } 5) \): 2.000 V to 3.200 V^3\ (100 mV step) Accuracy ±80 mV
 - Overdischarge release voltage \(n (n = 1 \text{ to } 5) \): 2.000 V to 3.400 V^3\ Accuracy ±100 mV
- **Discharge overcurrent detection in 2-step**
 - Discharge overcurrent detection voltage: 0.050 V to 0.300 V^4\ (50 mV step) Accuracy ±15 mV
 - Short circuit detection voltage: 0.500 V to 1.000 V^4\ (100 mV step) Accuracy ±100 mV
- **Charge overcurrent detection**
 - Charge overcurrent detection voltage: −0.300 V to −0.050 V (50 mV step) Accuracy ±30 mV
- **Settable by external capacitor; Overcharge detection delay time, Overdischarge detection delay time, Discharge overcurrent detection delay time, Charge overcurrent detection delay time**
 - (Load short circuit detection delay time is internally fixed.)
- **S-8205A Series: used for 4-series cell, S-8205B Series: used for 5-series cell**
- **Independent charging and discharge control by the control pins**
- **0 V battery charge**
 - Enabled, inhibited
- **Power-down function**
 - Available, unavailable
- **High-withstand voltage**
 - Absolute maximum rating: 28 V
- **Wide range of operation voltage**
 - 2 V to 24 V
- **Wide range of operation temperature**
 - \(Ta = -40°C \text{ to } +85°C \)
- **Low current consumption**
 - During operation: 40 μA max. (\(Ta = +25°C \))
 - During power-down: 0.1 μA max. (\(Ta = +25°C \))
- **Lead-free (Sn 100%), halogen-free**

*1. The overcharge detection voltage \(n (n = 1 \text{ to } 5) \) and overdischarge detection voltage \(n (n = 1 \text{ to } 5) \) are not selectable if the voltage difference between them is 0.6 V or less.

*2. Overcharge hysteresis voltage \(n (n = 1 \text{ to } 5) \) is selectable in 0 V, or in 0.1 V to 0.4 V in 50 mV step.
 - (Overcharge hysteresis voltage = Overcharge detection voltage – Overcharge release voltage)

*3. Overdischarge hysteresis voltage \(n (n = 1 \text{ to } 5) \) is selectable in 0 V, or in 0.2 V to 0.7 V in 100 mV step.
 - (Overdischarge hysteresis voltage = Overdischarge release voltage – Overdischarge detection voltage)

*4. The discharge overcurrent detection voltage and load short circuit detection voltage are not selectable if the voltage difference between them is 0.3 V or less.

Application

- Rechargeable lithium-ion battery pack

Package

- 16-Pin TSSOP
BATTERY PROTECTION IC FOR 4-SERIES OR 5-SERIES CELL PACK
S-8205A/B Series

Block Diagram

1. S-8205A Series

Remark Diodes in the figure are parasitic diodes.
2. S-8205B Series

Figure 2

Remark Diodes in the figure are parasitic diodes.
Product Name Structure

1. **Product Name**

 S-8205 x xx - TCT1 U

 - **Environmental code**
 - U: Lead-free (Sn 100%), halogen-free
 - **Package abbreviation and IC packing specifications**
 - TCT1: 16-Pin TSSOP, Tape
 - **Serial code**
 - Sequentially set from AA to ZZ
 - **Product series name**
 - A: 4-cell
 - B: 5-cell

 *1. Refer to the tape drawing.
 *2. Refer to "3. Product Name List".

Package

Table 1 Package Drawing Code

<table>
<thead>
<tr>
<th>Package Name</th>
<th>Dimension</th>
<th>Tape</th>
<th>Reel</th>
</tr>
</thead>
</table>
3. Product Name List

Table 2 S-8205A Series (For 4-Series Cell)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S-8205AAA-TCT1U</td>
<td>4.225 V</td>
<td>4.125 V</td>
<td>2.300 V</td>
<td>3.000 V</td>
<td>0.150 V</td>
<td>0.500 V</td>
<td>0.100 V</td>
<td>Enabled</td>
<td>Available (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AAB-TCT1U</td>
<td>4.225 V</td>
<td>4.075 V</td>
<td>2.300 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>0.100 V</td>
<td>Enabled</td>
<td>Available (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AAC-TCT1U</td>
<td>4.225 V</td>
<td>4.125 V</td>
<td>2.500 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>0.050 V</td>
<td>Enabled</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AAD-TCT1U</td>
<td>3.850 V</td>
<td>3.700 V</td>
<td>2.700 V</td>
<td>2.900 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>0.100 V</td>
<td>Enabled</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AAE-TCT1U</td>
<td>4.250 V</td>
<td>4.150 V</td>
<td>2.700 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>0.100 V</td>
<td>Enabled</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AFF-TCT1U</td>
<td>4.250 V</td>
<td>4.150 V</td>
<td>2.500 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>0.050 V</td>
<td>Inhibited</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AGG-TCT1U</td>
<td>3.400 V</td>
<td>4.150 V</td>
<td>2.600 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>0.100 V</td>
<td>Inhibited</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AHG-TCT1U</td>
<td>4.400 V</td>
<td>4.250 V</td>
<td>2.800 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.600 V</td>
<td>0.100 V</td>
<td>Inhibited</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AJH-TCT1U</td>
<td>4.450 V</td>
<td>4.300 V</td>
<td>2.800 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.600 V</td>
<td>0.150 V</td>
<td>Inhibited</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AKH-TCT1U</td>
<td>4.500 V</td>
<td>4.300 V</td>
<td>2.800 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.600 V</td>
<td>0.150 V</td>
<td>Inhibited</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AAL-TCT1U</td>
<td>4.400 V</td>
<td>4.200 V</td>
<td>2.800 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>0.100 V</td>
<td>Enabled</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AAM-TCT1U</td>
<td>4.425 V</td>
<td>4.225 V</td>
<td>2.800 V</td>
<td>3.000 V</td>
<td>0.150 V</td>
<td>0.500 V</td>
<td>0.100 V</td>
<td>Enabled</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205ANM-TCT1U</td>
<td>3.400 V</td>
<td>4.150 V</td>
<td>2.800 V</td>
<td>3.000 V</td>
<td>0.150 V</td>
<td>0.500 V</td>
<td>0.100 V</td>
<td>Enabled</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AOO-TCT1U</td>
<td>4.250 V</td>
<td>4.275 V</td>
<td>2.800 V</td>
<td>3.000 V</td>
<td>0.150 V</td>
<td>0.600 V</td>
<td>0.100 V</td>
<td>Enabled</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AAP-TCT1U</td>
<td>4.280 V</td>
<td>4.180 V</td>
<td>2.300 V</td>
<td>2.500 V</td>
<td>0.050 V</td>
<td>0.500 V</td>
<td>0.300 V</td>
<td>Enabled</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205AOQ-TCT1U</td>
<td>4.175 V</td>
<td>4.025 V</td>
<td>2.750 V</td>
<td>3.050 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>0.100 V</td>
<td>Enabled</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-8205ARQ-TCT1U</td>
<td>4.225 V</td>
<td>3.975 V</td>
<td>2.700 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>0.100 V</td>
<td>Enabled</td>
<td>Available (2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1. The delay time is set by the external capacitor.

But the discharge overcurrent release delay time \(t_{DIOVR} \) and charge overcurrent release delay time \(t_{CIOVR} \) are calculated by discharge overcurrent detection delay time \(t_{DIOV} \) and charge overcurrent detection delay time \(t_{CIOV} \) as the following equations. 1 [ms] (typ.) is the internal delay time of the S-8205A Series.

\[
(1) \quad t_{DIOVR} = t_{DIOV} \times 10 + 1 [\text{ms}] \quad \text{(typ.)}, \quad t_{CIOVR} = t_{CIOV} \times 10 + 1 [\text{ms}] \quad \text{(typ.)}
\]

\[
(2) \quad t_{DIOVR} = t_{DIOV} \times 0.05 + 1 [\text{ms}] \quad \text{(typ.)}, \quad t_{CIOVR} = t_{CIOV} \times 0.05 + 1 [\text{ms}] \quad \text{(typ.)}
\]

Moreover, refer to "7. Delay Time Setting" in "Operation" for calculational methods of delay times.

Remark Please contact our sales representatives for products other than the above.
Table 3 S-8205B Series (For 5-Series Cell)

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Overcharge Detection Voltage [V_{CU}]</th>
<th>Overcharge Release Voltage [V_{CL}]</th>
<th>Overdischarge Detection Voltage [V_{DL}]</th>
<th>Overdischarge Release Voltage [V_{DL}]</th>
<th>Discharge Overcurrent Detection Voltage [V_{DIOV}]</th>
<th>Load Short Circuit Detection Voltage [V_{DIOV}]</th>
<th>Charge Overcurrent Detection Voltage [V_{CIOV}]</th>
<th>0 V Battery Charge</th>
<th>Power-down Function</th>
<th>Delay Time*¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-8205BAA-TCT1U</td>
<td>4.225 V</td>
<td>4.125 V</td>
<td>2.300 V</td>
<td>3.000 V</td>
<td>0.150 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAB-TCT1U</td>
<td>4.225 V</td>
<td>4.075 V</td>
<td>2.300 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAC-TCT1U</td>
<td>4.200 V</td>
<td>4.100 V</td>
<td>2.500 V</td>
<td>3.200 V</td>
<td>0.100 V</td>
<td>0.800 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAD-TCT1U</td>
<td>4.200 V</td>
<td>4.000 V</td>
<td>2.700 V</td>
<td>3.000 V</td>
<td>0.150 V</td>
<td>1.000 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAE-TCT1U</td>
<td>4.200 V</td>
<td>4.100 V</td>
<td>2.500 V</td>
<td>3.200 V</td>
<td>0.150 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAF-TCT1U</td>
<td>4.200 V</td>
<td>4.050 V</td>
<td>2.700 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>−0.200 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAG-TCT1U</td>
<td>4.250 V</td>
<td>4.150 V</td>
<td>2.700 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>−0.200 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAH-TCT1U</td>
<td>4.250 V</td>
<td>4.050 V</td>
<td>2.000 V</td>
<td>2.500 V</td>
<td>0.150 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAJ-TCT1U</td>
<td>4.225 V</td>
<td>4.075 V</td>
<td>2.300 V</td>
<td>3.000 V</td>
<td>0.100 V</td>
<td>0.500 V</td>
<td>−0.050 V</td>
<td>Inhibited</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAK-TCT1U</td>
<td>4.200 V</td>
<td>4.100 V</td>
<td>2.500 V</td>
<td>3.200 V</td>
<td>0.100 V</td>
<td>0.800 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BAL-TCT1U</td>
<td>4.200 V</td>
<td>4.000 V</td>
<td>2.700 V</td>
<td>3.000 V</td>
<td>0.150 V</td>
<td>1.000 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BAM-TCT1U</td>
<td>4.250 V</td>
<td>4.125 V</td>
<td>2.500 V</td>
<td>2.700 V</td>
<td>0.100 V</td>
<td>0.500 V</td>
<td>−0.050 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAN-TCT1U</td>
<td>4.250 V</td>
<td>4.100 V</td>
<td>2.700 V</td>
<td>3.000 V</td>
<td>0.150 V</td>
<td>0.500 V</td>
<td>−0.050 V</td>
<td>Inhibited</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAO-TCT1U</td>
<td>3.900 V</td>
<td>3.800 V</td>
<td>2.000 V</td>
<td>2.300 V</td>
<td>0.100 V</td>
<td>0.600 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAP-TCT1U</td>
<td>4.200 V</td>
<td>4.100 V</td>
<td>2.500 V</td>
<td>3.200 V</td>
<td>0.100 V</td>
<td>0.800 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Unavailable</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BAQ-TCT1U</td>
<td>3.900 V</td>
<td>3.750 V</td>
<td>2.000 V</td>
<td>2.700 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>−0.150 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAR-TCT1U</td>
<td>4.250 V</td>
<td>4.100 V</td>
<td>2.500 V</td>
<td>3.200 V</td>
<td>0.100 V</td>
<td>0.800 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(1)</td>
</tr>
<tr>
<td>S-8205BAS-TCT1U</td>
<td>4.250 V</td>
<td>4.100 V</td>
<td>2.500 V</td>
<td>3.000 V</td>
<td>0.150 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BAT-TCT1U</td>
<td>4.200 V</td>
<td>4.100 V</td>
<td>2.800 V</td>
<td>3.200 V</td>
<td>0.100 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BAU-TCT1U</td>
<td>4.250 V</td>
<td>4.100 V</td>
<td>2.500 V</td>
<td>3.200 V</td>
<td>0.100 V</td>
<td>0.800 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BAV-TCT1U</td>
<td>4.225 V</td>
<td>3.957 V</td>
<td>2.400 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BAW-TCT1U</td>
<td>4.280 V</td>
<td>4.080 V</td>
<td>2.800 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.600 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BAX-TCT1U</td>
<td>4.250 V</td>
<td>3.975 V</td>
<td>2.500 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BAY-TCT1U</td>
<td>4.225 V</td>
<td>3.975 V</td>
<td>2.700 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BAZ-TCT1U</td>
<td>4.225 V</td>
<td>3.975 V</td>
<td>3.000 V</td>
<td>3.200 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BBA-TCT1U</td>
<td>4.175 V</td>
<td>4.025 V</td>
<td>2.750 V</td>
<td>3.050 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BBB-TCT1U</td>
<td>4.225 V</td>
<td>4.025 V</td>
<td>2.500 V</td>
<td>2.500 V</td>
<td>0.050 V</td>
<td>0.500 V</td>
<td>−0.050 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BCC-TCT1U</td>
<td>4.225 V</td>
<td>3.975 V</td>
<td>2.800 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BBD-TCT1U</td>
<td>4.225 V</td>
<td>3.975 V</td>
<td>2.850 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
<tr>
<td>S-8205BBE-TCT1U</td>
<td>4.225 V</td>
<td>3.975 V</td>
<td>2.900 V</td>
<td>3.000 V</td>
<td>0.200 V</td>
<td>0.500 V</td>
<td>−0.100 V</td>
<td>Enabled</td>
<td>Available</td>
<td>(2)</td>
</tr>
</tbody>
</table>

*¹. The delay time is set by the external capacitor.

But the discharge overcurrent release delay time \(t_{DIOVR}\) and charge overcurrent release delay time \(t_{CIOR}\) are calculated by discharge overcurrent detection delay time \(t_{DIOV}\) and charge overcurrent detection delay time \(t_{CIOV}\) as the following equations. 1 [ms] (typ.) is the internal delay time of the S-8205B Series.

1. \(t_{DIOVR} = t_{DIOV} \times 10 + 1\) [ms] (typ.), \(t_{CIOR} = t_{CIOV} \times 10 + 1\) [ms] (typ.)
2. \(t_{DIOVR} = t_{DIOV} \times 0.05 + 1\) [ms] (typ.), \(t_{CIOR} = t_{CIOV} \times 0.05 + 1\) [ms] (typ.)

Moreover, refer to "7. Delay Time Setting" in "Operation" for calculational methods of delay times.

Remark Please contact our sales representatives for products other than the above.
Pin Configuration

![Pin Configuration Diagram](image)

Table 4

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VM</td>
<td>Pin for voltage detection between VSS pin and VM pin</td>
</tr>
<tr>
<td>2</td>
<td>CO</td>
<td>FET gate connection pin for charge control (Pch open-drain output) Pin for voltage detection between VSS pin and CO pin</td>
</tr>
<tr>
<td>3</td>
<td>DO</td>
<td>FET gate connection pin for discharge control FET (CMOS output) Pin for voltage detection between VSS pin and VINI pin</td>
</tr>
<tr>
<td>4</td>
<td>VINI</td>
<td>Control pin for charge FET</td>
</tr>
<tr>
<td>5</td>
<td>CTLC</td>
<td>Control pin for discharge FET</td>
</tr>
<tr>
<td>6</td>
<td>CTLD</td>
<td>Capacitor connection pin for delay for overcharge detection voltage</td>
</tr>
<tr>
<td>7</td>
<td>CCT</td>
<td>Capacitor connection pin for delay for overdischarge detection voltage</td>
</tr>
<tr>
<td>8</td>
<td>CDT</td>
<td>Capacitor connection pin for delay for discharge overcurrent detection, charge overcurrent detection</td>
</tr>
<tr>
<td>9</td>
<td>CIT</td>
<td>Input pin for negative power supply, Connection pin for battery 5’s negative voltage</td>
</tr>
<tr>
<td>10</td>
<td>VSS</td>
<td>Connection pin for battery 4’s negative voltage, Connection pin for battery 5’s positive voltage</td>
</tr>
<tr>
<td>11</td>
<td>VC5</td>
<td>Connection pin for battery 3’s negative voltage, Connection pin for battery 4’s positive voltage</td>
</tr>
<tr>
<td>12</td>
<td>VC4</td>
<td>Connection pin for battery 2’s negative voltage, Connection pin for battery 3’s positive voltage</td>
</tr>
<tr>
<td>13</td>
<td>VC3</td>
<td>Connection pin for battery 1’s negative voltage, Connection pin for battery 2’s positive voltage</td>
</tr>
<tr>
<td>14</td>
<td>VC2</td>
<td>Connection pin for battery 1’s positive voltage</td>
</tr>
<tr>
<td>15</td>
<td>VC1</td>
<td>Input pin for positive power supply, Connection pin for battery 1’s positive voltage</td>
</tr>
<tr>
<td>16</td>
<td>VDD</td>
<td>Input pin for positive power supply, Connection pin for battery 1’s positive voltage</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Applied Pin</th>
<th>Absolute Maximum Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage between VDD pin and VSS pin</td>
<td>VDS</td>
<td>VDD</td>
<td>VSS – 0.3 to VSS + 28</td>
<td>V</td>
</tr>
<tr>
<td>Input pin voltage 1</td>
<td>VIN1</td>
<td>VC1, VC2, VC3, VC4, VC5, CTC, CTLD, CCT, CDT, CIT</td>
<td>VSS – 0.3 to VDD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Input pin voltage 2</td>
<td>VIN2</td>
<td>VM, VINI</td>
<td>VDD – 28 to VDD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>DO pin output voltage</td>
<td>VDO</td>
<td>DO</td>
<td>VSS – 0.3 to VDD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>CO pin input and output voltage</td>
<td>VCO</td>
<td>CO</td>
<td>VDD – 28 to VDD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>PD</td>
<td>–</td>
<td>1100*1</td>
<td>mW</td>
</tr>
<tr>
<td>Operation ambient temperature</td>
<td>Topr</td>
<td>–</td>
<td>–40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Tstg</td>
<td>–</td>
<td>–40 to +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

*1. When mounted on board
[Mounted board]
(1) Board size: 114.3 mm × 76.2 mm × t1.6 mm
(2) Board name: JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Figure 4 Power Dissipation of Package (When Mounted on Board)
Electrical Characteristics

Table 6 (1 / 2)
(Ta = +25°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Test Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overcharge detection voltage n</td>
<td>VCUn</td>
<td>V1 = V2 = V3 = V4 = V5" = VCU − 0.050 V</td>
<td>VCUC − 0.025</td>
<td>VCUC</td>
<td>VCUC + 0.025</td>
<td>V 2</td>
<td></td>
</tr>
<tr>
<td>Overcharge release voltage n</td>
<td>VCUn</td>
<td>V1 = V2 = V3 = V4 = V5" = VCU + 0.050 V</td>
<td>VCUC</td>
<td>VCUC + 0.050</td>
<td>VCUC + 0.050</td>
<td>V 2</td>
<td></td>
</tr>
<tr>
<td>Overdischarge detection voltage n</td>
<td>VCUn</td>
<td>V1 = V2 = V3 = V4 = V5" = VCU + 0.050 V</td>
<td>VCUC</td>
<td>VCUC + 0.050</td>
<td>VCUC + 0.050</td>
<td>V 2</td>
<td></td>
</tr>
<tr>
<td>Overdischarge release voltage n</td>
<td>VCUn</td>
<td>V1 = V2 = V3 = V4 = V5" = VCU + 0.050 V</td>
<td>VCUC</td>
<td>VCUC + 0.050</td>
<td>VCUC + 0.050</td>
<td>V 2</td>
<td></td>
</tr>
<tr>
<td>Overdischarge detection voltage</td>
<td>VDIOV</td>
<td>−</td>
<td>VDIOV − 0.015</td>
<td>VDIOV</td>
<td>VDIOV + 0.015</td>
<td>V 2</td>
<td></td>
</tr>
<tr>
<td>Overdischarge release voltage</td>
<td>VDIOV</td>
<td>−</td>
<td>VDIOV − 0.015</td>
<td>VDIOV</td>
<td>VDIOV + 0.015</td>
<td>V 2</td>
<td></td>
</tr>
<tr>
<td>Load short circuit detection</td>
<td>VSHORT</td>
<td>−</td>
<td>VSHORT − 0.100</td>
<td>VSHORT + 0.100</td>
<td>VSHORT + 0.100</td>
<td>V 2</td>
<td></td>
</tr>
<tr>
<td>voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge overcurrent detection</td>
<td>VICOV</td>
<td>−</td>
<td>VICOV − 0.030</td>
<td>VICOV</td>
<td>VICOV + 0.030</td>
<td>V 2</td>
<td></td>
</tr>
<tr>
<td>voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient 1°</td>
<td>TCOE1</td>
<td>Ta = 0°C to 50°C</td>
<td>−1.0</td>
<td>0</td>
<td>1.0</td>
<td>mV/°C</td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient 2°</td>
<td>TCOE2</td>
<td>Ta = 0°C to 50°C</td>
<td>−0.5</td>
<td>0</td>
<td>0.5</td>
<td>mV/°C</td>
<td></td>
</tr>
<tr>
<td>Delay Time Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCT pin internal resistance</td>
<td>RCCCT</td>
<td>V1 = 4.5 V, V2 = V3 = V4 = V5" = 3.5 V</td>
<td>6.15</td>
<td>8.31</td>
<td>10.2</td>
<td>MΩ 3</td>
<td></td>
</tr>
<tr>
<td>CDT pin internal resistance</td>
<td>RCSDT</td>
<td>V1 = 1.5 V, V2 = V3 = V4 = V5" = 3.5 V</td>
<td>615</td>
<td>831</td>
<td>1020</td>
<td>kΩ 3</td>
<td></td>
</tr>
<tr>
<td>CIT pin internal resistance</td>
<td>RCIT</td>
<td>−</td>
<td>123</td>
<td>166</td>
<td>204</td>
<td>kΩ 3</td>
<td></td>
</tr>
<tr>
<td>CCT pin detection voltage</td>
<td>VCCT</td>
<td>V1 = 4.5 V, V2 = V3 = V4 = V5" = 3.5 V</td>
<td>VDOS</td>
<td>VDOS</td>
<td>VDOS</td>
<td>V 3</td>
<td></td>
</tr>
<tr>
<td>CDT pin detection voltage</td>
<td>VCDT</td>
<td>V1 = 1.5 V, V2 = V3 = V4 = V5" = 3.5 V</td>
<td>VDOS</td>
<td>VDOS</td>
<td>VDOS</td>
<td>V 3</td>
<td></td>
</tr>
<tr>
<td>CIT pin detection voltage</td>
<td>VCIIT</td>
<td>V6 = VDIOV + 0.015 V</td>
<td>VDOS</td>
<td>VDOS</td>
<td>VDOS</td>
<td>V 3</td>
<td></td>
</tr>
<tr>
<td>Load short circuit detection</td>
<td>ISHORT</td>
<td>−</td>
<td>100</td>
<td>300</td>
<td>600</td>
<td>μs 2</td>
<td></td>
</tr>
<tr>
<td>delay time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTLC pin response time</td>
<td>ICTLC</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>2.5</td>
<td>ms 2</td>
<td></td>
</tr>
<tr>
<td>CTLD pin response time</td>
<td>ICTLD</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>2.5</td>
<td>ms 2</td>
<td></td>
</tr>
</tbody>
</table>

0 V Battery Charge

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Test Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0CHA</td>
<td></td>
<td>0 V battery charge enabled</td>
<td>V1 = V2 = V3 = V4 = V5" = 0 V</td>
<td>−</td>
<td>0.8</td>
<td>1.5</td>
<td>V 4</td>
</tr>
<tr>
<td>V0INH</td>
<td></td>
<td>0 V battery charge inhibited</td>
<td>V1 = V2 = V3 = V4 = V5" = 1.8 V</td>
<td>0.4</td>
<td>0.7</td>
<td>1.1</td>
<td>V 2</td>
</tr>
</tbody>
</table>

Internal Resistance

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Test Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTLC pin internal resistance</td>
<td>RCTLC</td>
<td>−</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>MΩ 5</td>
<td></td>
</tr>
<tr>
<td>CTLD pin internal resistance</td>
<td>RCTLD</td>
<td>−</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>MΩ 5</td>
<td></td>
</tr>
<tr>
<td>Resistance between VM pin and VDD</td>
<td>RVMD</td>
<td>V1 = V2 = V3 = V4 = V5" = 1.8 V</td>
<td>450</td>
<td>900</td>
<td>1800</td>
<td>kΩ 5</td>
<td></td>
</tr>
<tr>
<td>pin *6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance between VM pin and VSS</td>
<td>RVMS</td>
<td>−</td>
<td>250</td>
<td>500</td>
<td>750</td>
<td>kΩ 5</td>
<td></td>
</tr>
</tbody>
</table>
Table 6 (2/2)

(Ta = +25°C unless otherwise specified)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation voltage between VDD pin and VSS pin*7</td>
<td>V<sub>DSOP</sub></td>
<td>Fixed output voltage of DO pin and CO pin</td>
<td>2</td>
<td>24</td>
<td>24</td>
<td>V</td>
</tr>
<tr>
<td>CTLC pin change voltage*7</td>
<td>V<sub>CTLC</sub></td>
<td>–</td>
<td>2.1</td>
<td>3.0</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>CTLD pin change voltage*7</td>
<td>V<sub>CTLD</sub></td>
<td>–</td>
<td>2.1</td>
<td>3.0</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>Input Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current consumption during operation</td>
<td>I<sub>OPFE</sub></td>
<td>–</td>
<td>–</td>
<td>20</td>
<td>40</td>
<td>μA</td>
</tr>
<tr>
<td>Current consumption during power-down*6</td>
<td>I<sub>PDN</sub></td>
<td>V1 = V2 = V3 = V4 = V5 = 1.5 V</td>
<td>–</td>
<td>–</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td>VC1 pin current</td>
<td>I<sub>VC1</sub></td>
<td>–</td>
<td>–</td>
<td>0.5</td>
<td>3.0</td>
<td>μA</td>
</tr>
<tr>
<td>VC2 pin current</td>
<td>I<sub>VC2</sub></td>
<td>–</td>
<td>–</td>
<td>0.0</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>VC3 pin current</td>
<td>I<sub>VC3</sub></td>
<td>–</td>
<td>–</td>
<td>0.0</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>VC4 pin current</td>
<td>I<sub>VC4</sub></td>
<td>–</td>
<td>–</td>
<td>0.0</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>VC5 pin current</td>
<td>I<sub>VC5</sub></td>
<td>S-8205A Series</td>
<td>−3.0</td>
<td>–1.5</td>
<td>0</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-8205B Series</td>
<td>−1.0</td>
<td>0</td>
<td>1.0</td>
<td>μA</td>
</tr>
<tr>
<td>Output Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO pin source current</td>
<td>I<sub>DOH</sub></td>
<td>V13 = 0.5 V</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>μA</td>
</tr>
<tr>
<td>CO pin leakage current</td>
<td>I<sub>COL</sub></td>
<td>S-8205A Series V1 = V2 = V3 = V4 = 6 V</td>
<td>–</td>
<td>–</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-8205B Series V1 = V2 = V3 = V4 = V5 = 4.8 V</td>
<td>–</td>
<td>–</td>
<td>–10</td>
<td>μA</td>
</tr>
<tr>
<td>DO pin source current</td>
<td>I<sub>DOH</sub></td>
<td>V14 = 0.5 V</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>μA</td>
</tr>
<tr>
<td>DO pin sink current</td>
<td>I<sub>COL</sub></td>
<td>V15 = 0.5 V</td>
<td>–</td>
<td>–</td>
<td>–10</td>
<td>μA</td>
</tr>
</tbody>
</table>

*1. Because S-8205A Series are the protection ICs for 4-series cell, there is no V5 for them.
*2. Voltage temperature coefficient 1: Overcharge detection voltage
*3. Voltage temperature coefficient 2: Discharge overcurrent detection voltage
*4. Since products are not screened at high and low temperature, the specification for this temperature range is guaranteed by design, not tested in production.
*5. Refer to “Operation” for details of delay time function.
*6. For products with power-down function
*7. The S-8205A/B Series does not operate detection if the operation voltage between VDD pin and VSS pin (V_{DSOP}) is CTLC pin change voltage (V_{CTLC}) or CTLD pin change voltage (V_{CTLD}) or less.
Test Circuit

1. Current Consumption during Operation and Power-down (Test Circuit 1)
 Set S1 and S2 to OFF.

 1.1 Current Consumption during Operation (IOPE)
 Set V1 = V2 = V3 = V4 = 3.5 V (S-8205A Series), V1 = V2 = V3 = V4 = V5 = 3.5 V (S-8205B Series), S2 to ON.
 ISS is the current consumption during operation (IOPE) at that time.

 1.2 Current Consumption during Power-down (IPDN) (With power-down function)
 Set V1 = V2 = V3 = V4 = 1.5 V (S-8205A Series), V1 = V2 = V3 = V4 = V5 = 1.5 V (S-8205B Series), S1 to ON.
 ISS is the current consumption during power-down (IPDN) at that time.

2. Overcharge Detection Voltage, Overcharge Release Voltage, Overdischarge Detection Voltage,
 Overdischarge Release Voltage, Discharge Overcurrent Detection Voltage, Load Short Circuit
 Detection Voltage, Charge Overcurrent Detection Voltage, CTLC Pin Change Voltage, CTLD Pin
 Change Voltage, Load Short Circuit Detection Delay Time, CTLC Pin Response Time, CTLD Pin
 Response Time (Test Circuit 2)
 Set S3 to OFF.
 Confirm both VCO and VDO are in "H" (its voltage level is VDS \times 0.9 V or more) after setting V1 = V2 = V3 = V4 = 3.5 V
 (S-8205A Series), V1 = V2 = V3 = V4 = V5 = 3.5 V (S-8205B Series), V6 = V7 = V8 = 0 V (this status is referred to
 as initial status 1).

 2.1 Overcharge Detection Voltage (VCU1), Overcharge Release Voltage (VCL1)
 The overcharge detection voltage (VCU1) is V1 when the VCO is set to "L" (its voltage level is VDS \times 0.1 V or less)
 after increasing V1 gradually after setting V1 = V2 = V3 = V4 = VCU - 0.05 V (S-8205A Series), V1 = V2 = V3 = V4
 = V5 = VCU - 0.05 V (S-8205B Series) from the initial status 1. After that, decreasing V1 gradually, V1 is the
 overcharge release voltage (VCL1) when the VCO is set to "H" after setting V2 = V3 = V4 = 3.5 V (S-8205A Series),
 V2 = V3 = V4 = V5 = 3.5 V (S-8205B Series).

 2.2 Overdischarge Detection Voltage (VDL1), Overdischarge Release Voltage (VDU1)
 The overdischarge detection voltage (VDL1) is V1 when the VDO is set to "L" after decreasing V1 gradually from the
 initial status 1. After that, increasing V1 gradually, V1 is the overdischarge release voltage (VDU1) when VDO is set
to "H".
 By changing Vn (n = 2 to 4: S-8205A Series, n = 2 to 5: S-8205B Series), users can define the overcharge
detection voltage (VCU1), the overcharge release voltage (VCL1), the overdischarge detection voltage (VDL1), the
overdischarge release voltage (VDU1) as well when n = 1.

 2.3 Discharge Overcurrent Detection Voltage (VDIOV)
 The discharge overcurrent detection voltage (VDIOV) is V6 when VDO is set to "L" after increasing V6 gradually from
 the initial status 1.

 2.4 Load Short Circuit Detection Voltage (VSHORT)
 The load short circuit detection voltage (VSHORT) is V6 when VDO is set to "L" after increasing V6 gradually after
 setting S3 to ON from the initial status 1.

 2.5 Charge Overcurrent Detection Voltage (VCIOV)
 The charge overcurrent detection voltage (VCIOV) is V6 when VCO is set to "L" after decreasing V6 gradually from
 the initial status 1.

 2.6 CTLC Pin Change Voltage (VCTL)
 The CTLC pin change voltage (VCTL) is V7 when VCO is set to "L" after increasing V7 gradually from the initial
 status 1.

 2.7 CTLD Pin Change Voltage (VCTLD)
 The CTLD pin change voltage (VCTLD) is V8 when VDO is set to "L" after increasing V8 gradually from the initial
 status 1.
2.8 Load Short Circuit Detection Delay Time (t_{SHORT})

Load short circuit detection delay time (t_{SHORT}) is a period in which V_{DO} changes to "L" after changing V6 to 1.5 V instantaneously, after setting S3 to ON from the initial status 1.

2.9 CTLC Pin Response Time (t_{CTLC})

CTLC pin response time (t_{CTLC}) is a period in which V_{CO} changes to "L" after changing V7 = V_{DS} instantaneously from the initial status 1.

2.10 CTLD Pin Response Time (t_{CTLD})

CTLD pin response time (t_{CTLD}) is a period in which V_{DO} changes to "L" after changing V8 = V_{DS} instantaneously from the initial status 1.

3. CCT Pin Internal Resistance, CDT Pin Internal Resistance, CIT Pin Internal Resistance, CCT Pin Detection Voltage, CDT Pin Detection Voltage, CIT Pin Detection Voltage (Test Circuit 3)

Confirm both V_{CO} and V_{DO} are in "H" after setting V1 = V2 = V3 = V4 = 3.5 V (S-8205A Series), V1 = V2 = V3 = V4 = V5 = 3.5 V (S-8205B Series), V6 = V9 = V10 = V11 = 0 V (this status is referred to as initial status 2).

3.1 CCT Pin Internal Resistance (R_{CCT})

The CCT pin internal resistance (R_{CCT}) can be defined by R_{CCT} = V_{DS} / I_{CCT} by using I_{CCT} when setting V1 = 4.5 V from the initial status 2.

3.2 CDT Pin Internal Resistance (R_{CDT})

The CDT pin internal resistance (R_{CDT}) can be defined by R_{CDT} = V_{DS} / I_{CDT} by using I_{CDT} when setting V1 = 1.5 V from the initial status 2.

3.3 CIT Pin Internal Resistance (R_{CIT})

The CIT pin internal resistance (R_{CIT}) can be defined by R_{CIT} = V_{DS} / I_{CIT} by using I_{CIT} when setting V6 = V_{DIOV} + 0.015 V from the initial status 2.

3.4 CCT Pin Detection Voltage (V_{CCT})

The CCT pin detection voltage (V_{CCT}) is V9 when V_{CO} is set to "L" after increasing V9 gradually, after setting V1 = 4.5 V from the initial status 2.

3.5 CDT Pin Detection Voltage (V_{CDT})

The CDT pin detection voltage (V_{CDT}) is V10 when V_{DO} is set to "L" after increasing V10 gradually, after setting V1 = 1.5 V from the initial status 2.

3.6 CIT Pin Detection Voltage (V_{CIT})

The CIT pin detection voltage (V_{CIT}) is V11 when V_{DO} is set to "L" after increasing V11 gradually, after setting V6 = V_{DIOV} + 0.015 V from the initial status 2.
4. 0 V Battery Charge Starting Charger Voltage (0 V Battery Charge Enabled) (Test Circuit 4),
0 V Battery Charge Inhibition Battery Voltage (0 V Battery Charge Inhibited) (Test Circuit 2)

4.1 0 V Battery Charge Starting Charger Voltage (V_{CHA}) (0 V Battery Charge Enabled)
The 0 V battery charge starting charger voltage (V_{CHA}) is V12 when V_{CO} is 0.1 V or more after increasing V12
gradually after setting $V_1 = V_2 = V_3 = V_4 = 0$ V (S-8205A Series), $V_1 = V_2 = V_3 = V_4 = V_5 = 0$ V (S-8205B
Series).

4.2 0 V Battery Charge Inhibition Battery Voltage (V_{INH}) (0 V Battery Charge Inhibited)
The 0 V battery charge inhibition battery voltage (V_{INH}) is V1 when V_{CO} is set to "L" after decreasing V1
gradually from the initial status 1.

5. CTLC Pin Internal Resistance, CTLD Pin Internal Resistance, Resistance between VM Pin and
VDD Pin, Resistance between VM Pin and VSS Pin, VC1 Pin Current, VC2 Pin Current, VC3 Pin
Current, VC4 Pin Current, VC5 Pin Current, CO Pin Source Current, CO Pin Leakage Current,
DO Pin Source Current, DO Pin Sink Current (Test Circuit 5)

Set S_1, S_5, S_6 and S_7 to OFF, set S_2 and S_4 to ON.
Set $V_1 = V_2 = V_3 = V_4 = 3.5$ V (S-8205A Series), $V_1 = V_2 = V_3 = V_4 = V_5 = 3.5$ V (S-8205B Series), $V_6 = V_{13} =
V_{14} = V_{15} = V_{16} = 0$ V (this status is referred to as initial status 3).

5.1 CTLC Pin Internal Resistance (R_{CTLC})
In the initial status 3, the value of CTLC pin internal resistance (R_{CTLC}) can be defined by $R_{CTLC} = V_{DS} / I_{CTLC}$ by
using I_{CTLC}.

5.2 CTLD Pin Internal Resistance (R_{CTLD})
In the initial status 3, the value of CTLD pin internal resistance (R_{CTLD}) can be defined by $R_{CTLD} = V_{DS} / I_{CTLD}$ by
using I_{CTLD}.

5.3 Resistance between VM Pin and VDD Pin (R_{VMD}) (With power-down function)
The value of resistance between VM pin and VDD pin (R_{VMD}) can be defined by $R_{VMD} = V_{DS} / I_{VM}$ by using I_{VM}
when setting $V_1 = V_2 = V_3 = V_4 = 1.8$ V (S-8205A Series), $V_1 = V_2 = V_3 = V_4 = V_5 = 1.8$ V (S-8205B Series)
from the initial status 3.

5.4 Resistance between VM Pin and VSS Pin (R_{VMS})
The value of resistance between VM pin and VSS pin (R_{VMS}) can be defined by $R_{VMS} = V_{DS} / I_{VM}$ by using I_{VM}
when setting $V_6 = 1.5$ V, S_2 to OFF, S_1 to ON from the initial status 3.

5.5 VC1 Pin Current (I_{VC1}), VC2 Pin Current (I_{VC2}), VC3 Pin Current (I_{VC3}), VC4 Pin Current (I_{VC4}),
VC5 Pin Current (I_{VC5})
In the initial status 3, I_1 is the VC1 pin current (I_{VC1}), I_2 is the VC2 pin current (I_{VC2}), I_3 is the VC3 pin current (I_{VC3}),
I_4 is the VC4 pin current (I_{VC4}), I_5 is the VC5 pin current (I_{VC5}).

5.6 CO Pin Source Current (I_{COH}), CO Pin Leakage Current (I_{COL})
The CO pin source current (I_{COH}) is I_{CO} when setting $V_{13} = 0.5$ V from the initial status 3. After that, the CO pin
leakage current (I_{COL}) is I_{CO} when setting $V_1 = V_2 = V_3 = V_4 = 6$ V (S-8205A Series), $V_1 = V_2 = V_3 = V_4 = V_5 =
4.8$ V (S-8205B Series), S_4 to OFF, S_5 to ON.

5.7 DO Pin Source Current (I_{DOH}), DO Pin Sink Current (I_{DOL})
The DO pin source current (I_{DOH}) is I_{DO} when setting $V_{14} = 0.5$ V, S_6 to ON from the initial status 3. After that, the
DO pin sink current (I_{DOL}) is I_{DO} when setting $V_1 = V_2 = V_3 = V_4 = 1.8$ V (S-8205A Series), $V_1 = V_2 = V_3 = V_4 =
V_5 = 1.8$ V (S-8205B Series), S_6 to OFF, S_7 to ON, $V_{15} = 0.5$ V.
BATTERY PROTECTION IC FOR 4-SERIES OR 5-SERIES CELL PACK

S-8205A/B Series

Figure 8 Test Circuit 4

Figure 9 Test Circuit 5
Operation

Remark Refer to "Connection Examples of Battery Protection IC".

1. Normal Status

In the S-8205A/B Series, both of CO pin and DO pin get the V_DD level when the voltage of each of the batteries is in the range of overdischarge detection voltage (\(V_{DLn} \)) to overcharge detection voltage (\(V_{CUn} \)), and due to the discharge current, the VINI pin's voltage is in the range of charge overcurrent detection voltage (\(V_{CIOV} \)) to discharge overcurrent detection voltage (\(V_{DIOV} \)). This is the normal status. At this time, the charge and discharge FETs are on.

2. Overcharge Status

In the S-8205A/B Series, the voltage of one of the batteries increases to the level of more than \(V_{CUn} \), the CO pin is set in high impedance. This is the overcharge status. The CO pin is pulled down to \(E_B^- \) by an external resistor so that the charge FET is turned off and it stops charging.

The overcharge status is released if either condition mentioned below is satisfied;

(1) In case that the CO pin voltage is \(1 / 50 \times V_{DS} \) or less, and the voltage of each of the batteries which are \(V_{CUn} \) or more is in the level of overcharge release voltage (\(V_{CLn} \)) or less.

(2) In case that the CO pin voltage is \(1 / 50 \times V_{DS} \) or more, and the voltage of each of the batteries is in the level of \(V_{CUn} \) or less.

3. Overdischarge Status

In the S-8205A/B Series, when the voltage of one of the batteries decreases to the level of \(V_{DLn} \) or less, the DO pin voltage gets the V_SS level. This is the overdischarge status. The discharge FET is turned off and it stops discharging.

The overdischarge status is released if either condition mentioned below is satisfied;

(1) In case that the VM pin voltage is in the level of less than V_SS, and the voltage of each of the batteries is in the level of \(V_{DLn} \) or more.

(2) In case that the VM pin voltage is \(V_{DS} / 5 \) (typ.) or less and the VM pin voltage is in the level of more than V_SS, and the voltage of each of the batteries which are \(V_{DLn} \) or less is in the level of overdischarge release voltage (\(V_{DUn} \)) or more.

3.1 With power-down function

In the S-8205A/B Series, when it reaches the overdischarge status, the VM pin is pulled up to the V_DD level by a resistor between VM pin and VDD pin (\(R_{VM} \)). If the VM pin voltage and the CO pin voltage increase to the level of \(V_{DS} / 5 \) (typ.) or more, respectively, the power-down function starts to operate and almost every circuit in the S-8205A/B Series stops working.

The power-down function is released if either condition mentioned below is satisfied;

(1) The VM pin voltage gets \(V_{DS} / 5 \) (typ.) or less.

(2) The CO pin voltage gets \(V_{DS} / 5 \) (typ.) or less.

4. Discharge Overcurrent Status

The discharging current increases to a certain value or more. As a result, if the status in which the VINI pin voltage increases to the level of \(V_{DIOV} \) or more, the DO pin gets the V_SS level. This is the discharge overcurrent status. The discharge control FET is turned off and it stops discharging. In the status of discharge overcurrent, the CO pin is set in high impedance. The VM pin is pulled down to the V_SS level by a resistor between VM pin and VSS pin (\(R_{VM} \)).

S-8205A/B Series has two levels for discharge overcurrent detection (\(V_{DIOV}, V_{SHORT} \)). The S-8205A/B Series' actions against load short circuit detection voltage (\(V_{SHORT} \)) are as well in \(V_{DIOV} \).

The discharge overcurrent status is released if the following condition is satisfied.

(1) The VM pin voltage gets \(V_{DS} / 10 \) (typ.) or less.
5. Charge Overcurrent Status

In the S-8205A/B Series, the charge current increases to a certain value or more. As a result, if the status in which the VINI pin voltage decreases to the level of \(V_{CIOV} \) or less, the CO pin is set in high impedance. This is the charge overcurrent status. The charge control FET is turned off and it stops charging. In this charge overcurrent status, DO pin gets the VSS level. The VM pin is pulled up to the VDD level by resistance between VM pin and VDD pin (\(R_{VMD} \)).

The charge overcurrent status is released if the following condition is satisfied.

1. The CO pin voltage gets \(1 / 50 \times V_{DS} \) (typ.) or more.

6. 0 V Battery Charge

In the S-8205A/B Series, regarding how to charge a discharged battery (0 V battery), users are able to select either function mentioned below.

1. Enable to charge a 0 V battery
 A 0 V battery is charged when charger voltage is more than 0 V battery charge starting charger voltage (\(V_{CHA} \)).
2. Inhibit charging a 0 V battery
 A 0 V battery is not charged when the voltage of one of the batteries is 0 V battery charge inhibition battery voltage (\(V_{INH} \)) or less.

Caution When the VDD pin voltage is less than the minimum value of operation voltage between VDD pin and VSS pin (\(V_{SOP} \)), the S-8205A/B Series’ action is not assured.

7. Delay Time Setting

In the S-8205A/B Series, users are able to set delay time for the period; from detecting the voltage of one of the batteries or detecting changes in the voltage at the VINI pin, to the output to the CO pin, DO pin. Each delay time is determined by a resistor in the IC and an external capacitor.

In the overcharge detection, when the voltage of one of the batteries gets \(V_{CU} \) or more, the S-8205A/B Series starts charging to the CCT pin’s capacitor (\(C_{CCT} \)) via the CCT pin’s internal resistor (\(R_{CCT} \)). After a certain period, the CO pin is set in high impedance if the voltage at the CCT pin reaches the CCT pin detection voltage (\(V_{CCT} \)). This period is overcharge detection delay time (\(t_{CU} \)).

\[
t_{CU} [s] = \frac{-\ln \left(\frac{1}{V_{CCT} / V_{DS}} \right)}{C_{CCT} [\mu F] \times R_{CCT} [M\Omega]}
\]

Overdischarge detection delay time (\(t_{DL} \)), discharge overcurrent detection delay time (\(t_{DIOV} \)), charge overcurrent detection delay time (\(t_{CIOV} \)) are calculated using the following equations as well.

\[
t_{DL} [ms] = \frac{-\ln \left(\frac{1}{V_{CDT} / V_{DS}} \right)}{C_{CDT} [\mu F] \times R_{CDT} [\Omega]}
\]

\[
t_{DIOV} [ms] = \frac{-\ln \left(\frac{1}{V_{CIT} / V_{DS}} \right)}{C_{CIT} [\mu F] \times R_{CIT} [\Omega]}
\]

\[
t_{CIOV} [ms] = \frac{-\ln \left(\frac{1}{V_{CIT} / V_{DS}} \right)}{C_{CIT} [\mu F] \times R_{CIT} [\Omega]}
\]

In case \(C_{CCT} = C_{CDT} = C_{CIT} = 0.1 [\mu F] \), each delay time \(t_{CU} \), \(t_{DL} \), \(t_{DIOV} \), \(t_{CIOV} \) is calculated using the following equations as well.

\[
t_{CU} [s] = 10.0 [M\Omega] (typ.) \times 0.1 [\mu F] = 1.0 [s] (typ.)
\]

\[
t_{DL} [ms] = 1000 [\Omega] (typ.) \times 0.1 [\mu F] = 100 [ms] (typ.)
\]

\[
t_{DIOV} [ms] = 200 [\Omega] (typ.) \times 0.1 [\mu F] = 20 [ms] (typ.)
\]

\[
t_{CIOV} [ms] = 200 [\Omega] (typ.) \times 0.1 [\mu F] = 20 [ms] (typ.)
\]

Discharge overcurrent release delay time (\(t_{DIOVR} \)) and charge overcurrent release delay time (\(t_{CIOVR} \)) can be selected from two types, and they are calculated by \(t_{DIOV} \) and \(t_{CIOV} \) as the following equations. 1 [ms] (typ.) is the internal delay time of the S-8205A/B Series.

\[
(1) \quad t_{DIOVR} = t_{DIOV} \times 10 + 1 [ms] (typ.), \quad t_{CIOVR} = t_{CIOV} \times 10 + 1 [ms] (typ.)
\]

\[
(2) \quad t_{DIOVR} = t_{DIOV} \times 0.05 + 1 [ms] (typ.), \quad t_{CIOVR} = t_{CIOV} \times 0.05 + 1 [ms] (typ.)
\]

Load short circuit detection delay time (\(t_{SHORT} \)) is fixed internally.
8. CTLC Pin and CTLD Pin

The S-8205A/B Series has two pins to control. The CTLC pin controls the CO pin, the CTLD pin controls the DO pin. Thus it is possible for users to control the CO pin and DO pin independently. These controls precede the battery protection circuit.

Table 7 Conditions Set by CTLC Pin

<table>
<thead>
<tr>
<th>CTLC Pin</th>
<th>CO Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTLC pin voltage $\geq V_{\text{CTLC}}$</td>
<td>High-Z</td>
</tr>
<tr>
<td>Open1</td>
<td>High-Z</td>
</tr>
<tr>
<td>CTLC pin voltage $< V_{\text{CTLC}}$</td>
<td>Normal status2</td>
</tr>
</tbody>
</table>

1. Pulled up by R_{CTLC} when CTLC pin is open.

2. The status is controlled by the voltage detection circuit.

Table 8 Conditions Set by CTLD Pin

<table>
<thead>
<tr>
<th>CTLD Pin</th>
<th>DO Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTLD pin voltage $\geq V_{\text{CTLD}}$</td>
<td>V_{SS} level</td>
</tr>
<tr>
<td>Open1</td>
<td>V_{SS} level</td>
</tr>
<tr>
<td>CTLD pin voltage $< V_{\text{CTLD}}$</td>
<td>Normal status2</td>
</tr>
</tbody>
</table>

1. Pulled up by R_{CTLD} when CTLD pin is open.

2. The status is controlled by the voltage detection circuit.
Timing Chart

1. **Overcharge Detection and Overdischarge Detection**

 - **Battery voltage**
 - V_{CLH}
 - V_{CLR}
 - ($n = 1$ to 5)
 - **DO pin voltage**
 - V_{DD}
 - **CO pin voltage**
 - V_{SS}
 - V_{OD}
 - V_{EB}
 - **VM pin voltage**
 - $1/5 \times V_{OD}$
 - V_{SS}
 - V_{EB}

 Status
 - **With power-down function**
 - $<1>$: Normal status
 - $<2>$: Overcharge status
 - $<3>$: Overdischarge status
 - $<4>$: Power-down status
 - **Without power-down function**
 - $<1>$: Normal status
 - $<2>$: Overcharge status
 - $<3>$: Overdischarge status
 - $<4>$: Power-down status

Remark The charger is assumed to charge with a constant current. V_{EB} indicates the open voltage of the charger.

Figure 10
2. Discharge Overcurrent Detection

Battery voltage

\[V_{CUn}, V_{CLn} \]

\[V_{DUn}, V_{DLn} \]

\(n = 1 \) to 5

\[V_{CLn}, V_{CHn} \]

\[V_{DIOV} \]

\[V_{DO}, V_{DD} \]

\[V_{SS} \]

DO pin voltage

CO pin voltage

\[V_{EB-} \]

\[V_{DD}, V_{SS} \]

VM pin voltage

VINI pin voltage

\[V_{DD}, V_{SHORT} \]

\[V_{SS} \]

Load connection

\[V_{DIOV}, V_{SS} \]

Discharge overcurrent detection delay time (\(t_{DIOV} \))

Load short circuit detection delay time (\(t_{SHORT} \))

Status

*1. \(<1> \): Normal status

\(<2> \): Discharge overcurrent status

Remark The charger is assumed to charge with a constant current. \(V_{EB-} \) indicates the open voltage of the charger.

Figure 11
3. Charge Overcurrent Detection

- **Battery voltage**
- **DO pin voltage**
- **CO pin voltage**
- **VM pin voltage**
- **VINI pin voltage**

Charger connection

Load connection

Status

- **With power-down function**
- **Without power-down function**

Remark The charger is assumed to charge with a constant current. V_{EB} indicates the open voltage of the charger.

Figure 12
■ Connection Examples of Battery Protection IC

1. S-8205A Series (4-Series Cell)

2. S-8205B Series (5-Series Cell)
Figure 15 Overheat Protection via PTC

[For PTC, contact]
Murata Manufacturing Co., Ltd.
Thermistor Products Department
Nagaokakyo-shi, Kyoto 617-8555 Japan
TEL +81-75-955-6863
Contact Us: http://www.murata.com/contact/index.html
Table 9 Constants for External Components

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVC1‡</td>
<td>0.47</td>
<td>1</td>
<td>1</td>
<td>kΩ</td>
</tr>
<tr>
<td>RVC2‡</td>
<td>0.47</td>
<td>1</td>
<td>1</td>
<td>kΩ</td>
</tr>
<tr>
<td>RVC3‡</td>
<td>0.47</td>
<td>1</td>
<td>1</td>
<td>kΩ</td>
</tr>
<tr>
<td>RVC4‡</td>
<td>0.47</td>
<td>1</td>
<td>1</td>
<td>kΩ</td>
</tr>
<tr>
<td>RVC5‡</td>
<td>0.47</td>
<td>1</td>
<td>1</td>
<td>kΩ</td>
</tr>
<tr>
<td>RDO</td>
<td>1</td>
<td>5.1</td>
<td>10</td>
<td>kΩ</td>
</tr>
<tr>
<td>RCD</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>MΩ</td>
</tr>
<tr>
<td>RVIM</td>
<td>3</td>
<td>5.1</td>
<td>10</td>
<td>kΩ</td>
</tr>
<tr>
<td>RCTL</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>kΩ</td>
</tr>
<tr>
<td>RCTLD</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>kΩ</td>
</tr>
<tr>
<td>RVIN</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>kΩ</td>
</tr>
<tr>
<td>RSENSE</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>mΩ</td>
</tr>
<tr>
<td>RVDD‡</td>
<td>43</td>
<td>100</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>CVC1 ‡</td>
<td>0.068</td>
<td>0.1</td>
<td>1</td>
<td>μF</td>
</tr>
<tr>
<td>CVC2 ‡</td>
<td>0.068</td>
<td>0.1</td>
<td>1</td>
<td>μF</td>
</tr>
<tr>
<td>CVC3 ‡</td>
<td>0.068</td>
<td>0.1</td>
<td>1</td>
<td>μF</td>
</tr>
<tr>
<td>CVC4 ‡</td>
<td>0.068</td>
<td>0.1</td>
<td>1</td>
<td>μF</td>
</tr>
<tr>
<td>CVC5 ‡</td>
<td>0.068</td>
<td>0.1</td>
<td>1</td>
<td>μF</td>
</tr>
<tr>
<td>CCCT</td>
<td>0.01</td>
<td>0.1</td>
<td>–</td>
<td>μF</td>
</tr>
<tr>
<td>CDT</td>
<td>0.01</td>
<td>0.1</td>
<td>–</td>
<td>μF</td>
</tr>
<tr>
<td>CIT</td>
<td>0.02</td>
<td>0.1</td>
<td>–</td>
<td>μF</td>
</tr>
<tr>
<td>CVDD ‡</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>μF</td>
</tr>
</tbody>
</table>

*1. Set up a filter constant to be \(R_{VDD} \times C_{VDD} = 68 \, \mu\text{F} \times \Omega \) or more, and to be \(R_{VC1} \times C_{VC1} = R_{VC2} \times C_{VC2} = R_{VC3} \times C_{VC3} = R_{VC4} \times C_{VC4} = R_{VC5} \times C_{VC5} = R_{VDD} \times C_{VDD} \).

Caution 1. The constants may be changed without notice.

2. It is recommended that filter constants between VDD pin and VSS pin should be set approximately to 100 \(\mu\text{F} \times \Omega \).

\[\text{e.g., } C_{VDD} \times R_{VDD} = 1.0 \, \mu\text{F} \times 100 \, \Omega = 100 \, \mu\text{F} \times \Omega \]

Sufficient evaluation of transient power supply fluctuation and overcurrent protection function with the actual application is needed to determine the proper constants.

Contact our sales representatives in case the constants should be set to other than 100 \(\mu\text{F} \times \Omega \).

3. It has not been confirmed whether the operation is normal or not in circuits other than the connection examples. In addition, the connection examples and the constants do not guarantee proper operation. Perform thorough evaluation using the actual application to set the constants.
Precautions

- The application conditions for the input voltage, output voltage, and load current should not exceed the package power dissipation.
- Batteries can be connected in any order, however, there may be cases when discharging cannot be performed when a battery is connected. In this case, short the VM pin and VSS pin or connect the battery charger to return to the normal mode.
- If both an overcharge battery and an overdischarge battery are included among the whole batteries, the condition is set in overcharge status and overdischarge status. Therefore either charging or discharging is impossible.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.
Characteristics (Typical Data)

1. Current Consumption

1.1 I_{OPE} vs V_{DS}

1.2 I_{OPE} vs Ta

1.3 I_{PDN} vs V_{DS}

1.4 I_{PDN} vs Ta

2.1 V_{CU} vs T_a

2.2 V_{CL} vs T_a

2.3 V_{DL} vs T_a

2.4 V_{DU} vs T_a

2.5 V_{DIOV} vs T_a

2.6 V_{SHORT} vs T_a

2.7 V_{COV} vs T_a
3. CCT Pin Internal Resistance / Detection Voltage, CDT Pin Internal Resistance / Detection Voltage,
CIT Pin Internal Resistance / Detection Voltage and Short Circuit Detection Voltage Delay Time

3.1 R_{CCT} vs T_a

3.2 V_{CCT} vs T_a ($V_{DS} = 18.5$ V)

3.3 R_{CDT} vs T_a

3.4 V_{CDT} vs T_a ($V_{DS} = 15.5$ V)

3.5 R_{CIT} vs T_a

3.6 V_{CIT} vs T_a ($V_{DS} = 17.5$ V)

3.7 t_{SHORT} vs T_a
4. CO Pin Source / Leakage Current, DO Pin Source / Sink Current

4.1 I_{COH} vs V_{CO}

4.2 I_{COL} vs V_{CO}

4.3 I_{DOH} vs V_{DO}

4.4 I_{DOL} vs V_{DO}
No. FT016-A-C-SD-1.1

<table>
<thead>
<tr>
<th>TITLE</th>
<th>TSSOP16-A-Carrier Tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>FT016-A-C-SD-1.1</td>
</tr>
<tr>
<td>ANGLE</td>
<td>FT016-A-C-SD-1.1</td>
</tr>
<tr>
<td>UNIT</td>
<td>mm</td>
</tr>
</tbody>
</table>

ABLIC Inc.
Enlarged drawing in the central part

No. FT016-A-R-S1-1.0

<table>
<thead>
<tr>
<th>TITLE</th>
<th>TSSOP16-A- Reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>FT016-A-R-S1-1.0</td>
</tr>
<tr>
<td>ANGLE</td>
<td>QTY.</td>
</tr>
<tr>
<td>UNIT</td>
<td>mm</td>
</tr>
</tbody>
</table>

ABLIC Inc.
Disclaimers (Handling Precautions)

1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.

2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter “the products”) or infringement of third-party intellectual property right and any other right due to the use of the information described herein.

3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.

4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.

5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.

6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.

7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.

8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.

9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products’ failure or malfunction. The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer’s own responsibility.

10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.

11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.

12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.

13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc.

14. For more details on the information described herein or any other questions, please contact ABLIC Inc.’s sales representative.

15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.