

S-191BxxxxA Series

AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE

www.ablic.com

© ABLIC Inc., 2023

Rev.1.1 00

This IC, developed using CMOS technology, is a high-accuracy window voltage detector that detects undervoltage and overvoltage. The detection voltage and release voltage are fixed internally with an accuracy of $\pm 1.5\%$.

Apart from the power supply pin, the detection voltage input pin (SENSE pin) is also prepared, so the output is stable even if the SENSE pin voltage (V_{SENSE}) falls to 0 V.

The release signal can be delayed by setting a capacitor externally, and the release delay time accuracy is $\pm 15\%$ (C_D = 3.3 nF).

The output form is Nch open-drain output.

ABLIC Inc. offers FIT rate calculated based on actual customer usage conditions in order to support customer functional safety design.

For more information regarding our FIT rate calculation, contact our sales representatives.

Caution This product can be used in vehicle equipment and in-vehicle equipment. Before using the product for these purposes, it is imperative to contact our sales representatives.

Features

Detection voltage:	Undervoltage detection voltage	0.6 V to 4.9 V (0.05 V step)
	Overvoltage detection voltage	0.7 V to 5.5 V (0.05 V step)
 Detection voltage accuracy: 	Undervoltage detection voltage	±1.5%
	Overvoltage detection voltage	±1.5%
• Hysteresis width selectable from "Available" /	"Unavailable":	"Available": 3.0%, 5.0%, 10.0%
		"Unavailable": 0%
 Detection response time: 	10.0 μs typ.	
 Release delay time accuracy: 	±15% (C _D = 3.3 nF)	
Output form:	Nch open-drain output	
Current consumption:	1.5 μA typ.	
 Operation voltage range: 	2.5 V to 6.0 V	

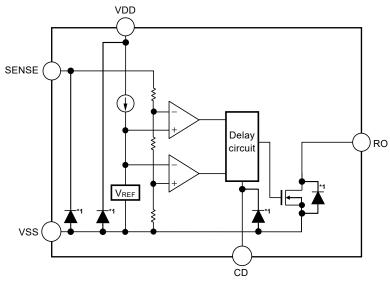
Ta = -40°C to +125°C

- Operation temperature range:
- Lead-free (Sn 100%), halogen-free
- AEC-Q100 in process^{*1}

*1. Contact our sales representatives for details.

Applications

- Overvoltage detection of power supply for automotive electric component
- Voltage monitoring of automotive ECUs, ADAS, etc.
- For automotive use (engine, transmission, suspension, ABS, related-devices for EV / HEV / PHEV, etc.)

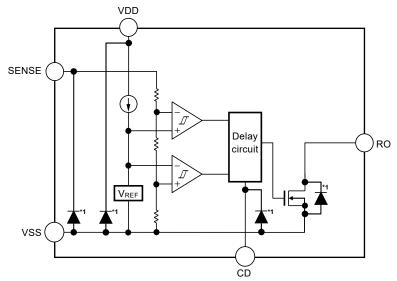

Packages

- SOT-23-6
- HSNT-8(1616)B

Block Diagrams

1. SOT-23-6

1.1 Hysteresis width "Unavailable"



*1. Parasitic diode

Figure 1

Product Name	Hysteresis Width (Vuvнys, Vovнys)	RO Pin Output Form	RO Pin Output Logic
S-191B0xxxA	0%	Nch open-drain output	Active "L"
S-191B1xxxA	0%	Nch open-drain output	Active "L"
S-191B2xxxA	0%	Nch open-drain output	Active "L"
S-191B3xxxA	0%	Nch open-drain output	Active "L"
S-191B4xxxA	0%	Nch open-drain output	Active "L"

1.2 Hysteresis width "Available"

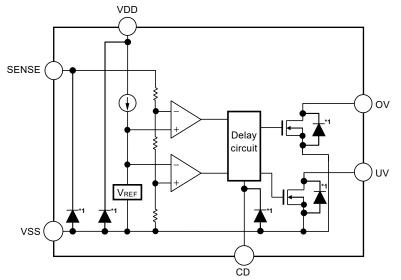
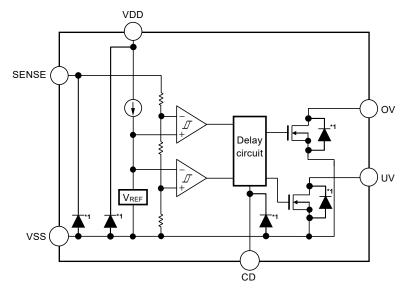

*1. Parasitic diode

Figure 2

Product Name	Hysteresis Width (Vuvнys, Vovнys)	RO Pin Output Form	RO Pin Output Logic
S-191BAxxxA	3.0%	Nch open-drain output	Active "L"
S-191BBxxxA	3.0%	Nch open-drain output	Active "L"
S-191BCxxxA	3.0%	Nch open-drain output	Active "L"
S-191BDxxxA	3.0%	Nch open-drain output	Active "L"
S-191BExxxA	3.0%	Nch open-drain output	Active "L"
S-191BGxxxA	5.0%	Nch open-drain output	Active "L"
S-191BHxxxA	5.0%	Nch open-drain output	Active "L"
S-191BJxxxA	5.0%	Nch open-drain output	Active "L"
S-191BKxxxA	5.0%	Nch open-drain output	Active "L"
S-191BLxxxA	5.0%	Nch open-drain output	Active "L"
S-191BNxxxA	10.0%	Nch open-drain output	Active "L"
S-191BPxxxA	10.0%	Nch open-drain output	Active "L"
S-191BQxxxA	10.0%	Nch open-drain output	Active "L"
S-191BRxxxA	10.0%	Nch open-drain output	Active "L"
S-191BSxxxA	10.0%	Nch open-drain output	Active "L"

2. HSNT-8(1616)B

2.1 Hysteresis width "Unavailable"



*1. Parasitic diode

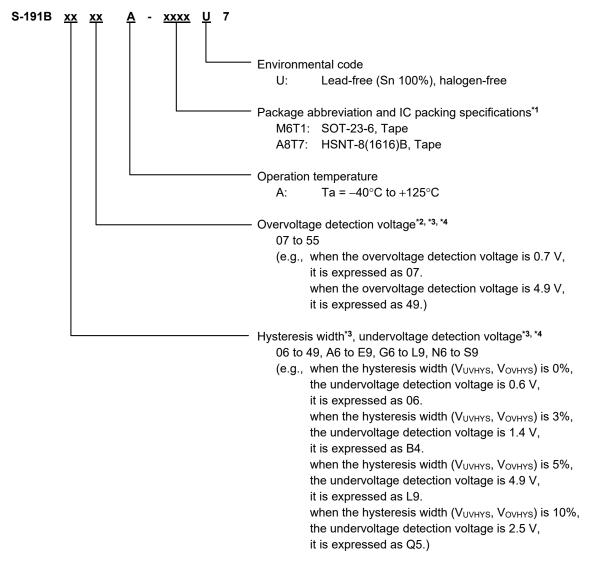
Figure 3

Product Name	Hysteresis Width (Vuvнys, Vovнys)	UV, OV Pin Output Form	UV, OV Pin Output Logic
S-191B0xxxA	0%	Nch open-drain output	Active "L"
S-191B1xxxA	0%	Nch open-drain output	Active "L"
S-191B2xxxA	0%	Nch open-drain output	Active "L"
S-191B3xxxA	0%	Nch open-drain output	Active "L"
S-191B4xxxA	0%	Nch open-drain output	Active "L"

2. 2 Hysteresis width "Available"

***1.** Parasitic diode

Figure 4


Product Name	Hysteresis Width (Vuvhys, Vovhys)	UV, OV Pin Output Form	UV, OV Pin Output Logic
S-191BAxxxA	3.0%	Nch open-drain output	Active "L"
S-191BBxxxA	3.0%	Nch open-drain output	Active "L"
S-191BCxxxA	3.0%	Nch open-drain output	Active "L"
S-191BDxxxA	3.0%	Nch open-drain output	Active "L"
S-191BExxxA	3.0%	Nch open-drain output	Active "L"
S-191BGxxxA	5.0%	Nch open-drain output	Active "L"
S-191BHxxxA	5.0%	Nch open-drain output	Active "L"
S-191BJxxxA	5.0%	Nch open-drain output	Active "L"
S-191BKxxxA	5.0%	Nch open-drain output	Active "L"
S-191BLxxxA	5.0%	Nch open-drain output	Active "L"
S-191BNxxxA	10.0%	Nch open-drain output	Active "L"
S-191BPxxxA	10.0%	Nch open-drain output	Active "L"
S-191BQxxxA	10.0%	Nch open-drain output	Active "L"
S-191BRxxxA	10.0%	Nch open-drain output	Active "L"
S-191BSxxxA	10.0%	Nch open-drain output	Active "L"

AEC-Q100 in Process

Contact our sales representatives for details of AEC-Q100 reliability specification.

Product Name Structure

1. Product name

- *1. Refer to the tape drawing.
- *2. Set the overvoltage detection voltage higher than the undervoltage detection voltage.
- *3. For details on hysteresis width and undervoltage detection voltage, refer to Table 1 and "2. Function list of product types". When determining the overvoltage detection voltage, undervoltage detection voltage and hysteresis width, refer to "3. Relationship between overvoltage detection voltage, undervoltage detection voltage dete
- *4. If you request the product which has 0.05 V step, contact our sales representatives.

Hysteresis Width (Vuvнys, Vovнys)	Undervoltage Detection Voltage (Vuvdet)	Product Name ^{*1}
0%	0.60 V to 0.95 V	S-191B0xxxA
0%	1.00 V to 1.95 V	S-191B1xxxA
0%	2.00 V to 2.95 V	S-191B2xxxA
0%	3.00 V to 3.95 V	S-191B3xxxA
0%	4.00 V to 4.90 V	S-191B4xxxA
3.0%	0.60 V to 0.95 V	S-191BAxxxA
3.0%	1.00 V to 1.95 V	S-191BBxxxA
3.0%	2.00 V to 2.95 V	S-191BCxxxA
3.0%	3.00 V to 3.95 V	S-191BDxxxA
3.0%	4.00 V to 4.90 V	S-191BExxxA
5.0%	0.60 V to 0.95 V	S-191BGxxxA
5.0%	1.00 V to 1.95 V	S-191BHxxxA
5.0%	2.00 V to 2.95 V	S-191BJxxxA
5.0%	3.00 V to 3.95 V	S-191BKxxxA
5.0%	4.00 V to 4.90 V	S-191BLxxxA
10.0%	0.60 V to 0.95 V	S-191BNxxxA
10.0%	1.00 V to 1.95 V	S-191BPxxxA
10.0%	2.00 V to 2.95 V	S-191BQxxxA
10.0%	3.00 V to 3.95 V	S-191BRxxxA
10.0%	4.00 V to 4.90 V	S-191BSxxxA

Tuble T Relationship between hystolesis math, ondervoltage beteetion voltage and i roudet name	Table 1	Relationship Between H	lysteresis Width, Undervol	Itage Detection Voltage and Product Name
--	---------	------------------------	----------------------------	--

*1. The first digit symbol after S-191B indicates the integer digits of hysteresis width and undervoltage detection voltage. The second digit symbol after S-191B indicates the decimal place of the undervoltage detection voltage.

Example: If the hysteresis width is 0% and the undervoltage detection voltage is 0.6 V, it is described as S-191B06.

If the hysteresis width is 3% and the undervoltage detection voltage is 1.4 V, it is described as S-191BB4.

If the hysteresis width is 5% and the undervoltage detection voltage is 4.9 V, it is described as S-191BL9.

If the hysteresis width is 10% and the undervoltage detection voltage is 2.5 V, it is described as S-191BQ5.

Remark If you request the product which has 0.05 V step, contact our sales representatives.

2. Function list of product types

Table 2

Product Name	Hysteresis Width (Vuvнys, Vovнys)	RO / UV, OV Pin Output Form	RO / UV, OV Pin Output Logic
S-191B0xxxA	0%	Nch open-drain output	Active "L"
S-191B1xxxA	0%	Nch open-drain output	Active "L"
S-191B2xxxA	0%	Nch open-drain output	Active "L"
S-191B3xxxA	0%	Nch open-drain output	Active "L"
S-191B4xxxA	0%	Nch open-drain output	Active "L"
S-191BAxxxA	3.0%	Nch open-drain output	Active "L"
S-191BBxxxA	3.0%	Nch open-drain output	Active "L"
S-191BCxxxA	3.0%	Nch open-drain output	Active "L"
S-191BDxxxA	3.0%	Nch open-drain output	Active "L"
S-191BExxxA	3.0%	Nch open-drain output	Active "L"
S-191BGxxxA	5.0%	Nch open-drain output	Active "L"
S-191BHxxxA	5.0%	Nch open-drain output	Active "L"
S-191BJxxxA	5.0%	Nch open-drain output	Active "L"
S-191BKxxxA	5.0%	Nch open-drain output	Active "L"
S-191BLxxxA	5.0%	Nch open-drain output	Active "L"
S-191BNxxxA	10.0%	Nch open-drain output	Active "L"
S-191BPxxxA	10.0%	Nch open-drain output	Active "L"
S-191BQxxxA	10.0%	Nch open-drain output	Active "L"
S-191BRxxxA	10.0%	Nch open-drain output	Active "L"
S-191BSxxxA	10.0%	Nch open-drain output	Active "L"

3. Packages

Package Name	Dimension	Таре	Reel	Land
SOT-23-6	MP006-A-P-SD	MP006-A-C-SD	MP006-A-R-SD	_
HSNT-8(1616)B	PY008-B-P-SD	PY008-B-C-SD	PY008-B-R-SD	PY008-B-L-SD

Pin Configurations

1. SOT-23-6

Top view

6	5	4
日	日	日,
H	1	∃
1	2	3

Figure 5

Pin No.	Symbol	Description
1	SENSE	Detection voltage input pin
2	VDD	Voltage input pin
3	NC ^{*1}	No connection
4	RO	Voltage detection output pin
5	VSS	GND pin
6	CD*2	Connection pin for release delay time adjustment capacitor

Table 4

- ***1.** The NC pin is electrically open.
 - The NC pin can be connected to the VDD pin or the VSS pin.
- *2. Connect a capacitor between the CD pin and the VSS pin. The release delay time can be adjusted according to the capacitance.

2. HSNT-8(1616)B

	Table 5			
Pin No.	Pin No. Symbol Description			
1	NC*2	No connection		
2	VDD	Voltage input pin		
3	NC*2	No connection		
4	SENSE	Detection voltage input pin		
5	CD*3	Connection pin for release delay time adjustment capacitor		
6	VSS	GND pin		
7	UV	Undervoltage detection output pin		
8	OV	Overvoltage detection output pin		
	1 2 3 4 5 6 7	1 NC*2 2 VDD 3 NC*2 4 SENSE 5 CD*3 6 VSS 7 UV		

Figure 6

- *1. Connect the heat sink of backside at shadowed area to the board, and set electric potential GND. However, do not use it as the function of electrode.
- ***2.** The NC pin is electrically open.
 - The NC pin can be connected to the VDD pin or the VSS pin.
- ***3.** Connect a capacitor between the CD pin and the VSS pin. The release delay time can be adjusted according to the capacitance.

Table 6

Absolute Maximum Ratings

(Ta = -40°C to +125°C unless otherwise specified) Item Symbol Absolute Maximum Rating Unit $V_{\text{SS}}-0.3$ to $V_{\text{SS}}+7.0$ Power supply voltage Vdd V V SENSE pin voltage VSENSE $V_{SS} - 0.3$ to $V_{SS} + 7.0$ V CD pin input voltage Vcd $V_{\text{SS}}-0.3$ to $V_{\text{DD}}+0.3 \leq V_{\text{SS}}+7.0$ V SOT-23-6 Vro Vss - 0.3 to Vss + 7.0 $V_{\text{SS}}-0.3$ to $V_{\text{SS}}+7.0$ V Output voltage Vuv HSNT-8(1616)B Vov $V_{SS} - 0.3$ to $V_{SS} + 7.0$ V SOT-23-6 25 mΑ Iro Output current 25 lυv mΑ HSNT-8(1616)B lov 25 mΑ -40 to +150 °C Junction temperature Ti °C -40 to +125 Operation ambient temperature Topr Storage temperature T_{stg} -40 to +150 °C

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

Thermal Resistance Value

Table 7

Item	Symbol	Condi	tion	Min.	Тур.	Max.	Unit	
	θ _{JA} HSNT-8(1616)B	Board D Board E	Board A	-	159	-	°C/W	
			Board B	-	124	-	°C/W	
			Board C	-	-	_	°C/W	
			Board D	-	-	-	°C/W	
Junction-to-ambient thermal resistance*1			Board E	-	-	-	°C/W	
Junction-to-ampient thermal resistance			Board A	-	214	-	°C/W	
		Board B	-	172	-	°C/W		
		HSNT-8(1616)E	HSNT-8(1616)B	Board C	-	52	-	°C/W
			Board D	_	55	_	°C/W	
			Board E	-	43	-	°C/W	

*1. Test environment: compliance with JEDEC STANDARD JESD51-2A

Remark Refer to "■ Power Dissipation" and "Test Board" for details.

AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE Rev.1.1_00 S-191BxxxxA Series

Table 8

Electrical Characteristics

1. SOT-23-6

		l able 8					
	1	(Ta =	-40°C to -	⊦125°C unl	ess otherv	vise sp	1
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Undervoltage detection voltage*1	VUVDET		$\begin{array}{c} V_{\text{UVDET(S)}} \\ \times 0.985 \end{array}$	VUVDET(S)	$\begin{array}{l} V_{\text{UVDET(S)}} \\ \times \ 1.015 \end{array}$	V	1
Overvoltage detection voltage*2	VOVDET	V_{DD} = 5.0 V, 0.7 V $\leq V_{OVDET(S)} \leq 5.5$ V	$\begin{array}{c} V_{\text{OVDET(S)}} \\ \times 0.985 \end{array}$	V _{OVDET(S)}	$\begin{array}{c} V_{\text{OVDET(S)}} \\ \times \ 1.015 \end{array}$	V	1
		S-191B06xx to S-191B49xx (V _{UVHYS} = 0%)	_	V _{UVDET} × 0.00	-	V	1
Undervoltage hysteresis width*3	Vuvhys	S-191BA6xx to S-191BE9xx (V _{UVHYS} = 3.0%)	$V_{UVDET} \times 0.02$	VUVDET × 0.03	VUVDET × 0.04	V	1
Undervoltage hysteresis width *	VUVHYS	S-191BG6xx to S-191BL9xx (V _{UVHYS} = 5.0%)	$V_{UVDET} \times 0.04$	$V_{UVDET} \times 0.05$	$V_{UVDET} \times 0.06$	V	1
		S-191BN6xx to S-191BS9xx (V _{UVHYS} = 10.0%)	V _{UVDET} × 0.09	VUVDET × 0.10	VUVDET × 0.11	V	1
C	Vovhys	S-191B06xx to S-191B49xx (V _{OVHYS} = 0%)	_	V _{OVDET} × 0.00	_	V	1
		S-191BA6xx to S-191BE9xx (V _{OVHYS} = 3.0%)	$V_{OVDET} \times 0.02$	$V_{OVDET} \times 0.03$	$V_{OVDET} \times 0.04$	V	1
Overvoltage hysteresis width*3		S-191BG6xx to S-191BL9xx (V _{OVHYS} = 5.0%)	$V_{OVDET} \times 0.04$	V _{OVDET} × 0.05	$V_{OVDET} \times 0.06$	V	1
		S-191BN6xx to S-191BS9xx (V _{OVHYS} = 10.0%)	$V_{OVDET} \times 0.09$	V _{OVDET} × 0.10	$V_{OVDET} \times 0.11$	V	1
Current consumption	Iss1	$V_{DD} = 5.0 V,$ $V_{SENSE} = (V_{UVREL(S)} + V_{OVREL(S)}) / 2$	_	1.5	2.6	μA	4
Operation voltage	Vdd	_	2.5	-	6.0	V	1
Output current	Ι _{ουτ}	RO pin Nch driver, $V_{DD} = 2.5 \text{ V}, V_{DS}^{*4} = 0.5 \text{ V},$ $V_{SENSE} = V_{UVDET(S)} - 0.5 \text{ V}$	2.50	-	-	mA	2
Leakage current	I _{LEAK}	RO pin Nch driver, V _{DD} = 6.0 V, V _{RO} = 6.0 V, V _{SENSE} = (V _{UVREL} (s) + V _{OVREL} (s)) / 2	_	_	0.20	μA	2
Detection response time*5	tRESET	_	_	10.0	40.0	μs	3
Release delay time*6	t _{DELAY}	C _D = 3.3 nF	8.5	10.0	11.5	ms	3
SENSE pin resistance	RSENSE	_	3.3	-	42.5	MΩ	4
CD pin discharge ON resistance	RCDD	V _{DD} = 2.5 V, V _{CD} = 0.7 V	0.15	-	0.90	kΩ	-

*1. VUVDET: Actual undervoltage detection voltage value, VUVDET(S): Set undervoltage detection voltage value

*2. VOVDET: Actual overvoltage detection voltage value, VOVDET(S): Set overvoltage detection voltage value

*3. V_{UVREL}: Actual undervoltage release voltage value, V_{UVREL(S)}: Set undervoltage release voltage value V_{OVREL}: Actual overvoltage release voltage value, V_{OVREL(S)}: Set overvoltage release voltage value V_{UVREL} and V_{OVREL} are as follows.

Hysteresis width "Unavailable":

VUVREL = VUVDET, VOVREL = VOVDET

Hysteresis width "Available": VUVREL = VUVDET + VUVHYS, VOVREL = VOVDET - VOVHYS

***4.** V_{DS}: Drain-to-source voltage of the output transistor

*5. The time period from when the pulse voltage of V_{UVDET(S)} + 0.5 V → V_{UVDET(S)} - 0.5 V or V_{OVDET(S)} - 0.5 V → V_{OVDET(S)} + 0.5 V is applied to the SENSE pin after V_{SENSE} reaches the release voltage once, until V_{UV} or V_{OV} reaches 50% of V_{DD}. It is the time period for V_{UV} or V_{OV} to reach 50% of V_{DD} after applying a pulse voltage of (V_{UVREL(S)} + V_{OVREL(S)}) / 2 → V_{UVREL(S)} - 0.5 V or (V_{UVREL(S)} + V_{OVREL(S)}) / 2 → V_{OVDET(S)} + 0.5 V to the SENSE pin, in case of V_{OVDET(S)} - V_{UVDET(S)} ≤ 0.5 V.

*6. The time period from when the pulse voltage of $V_{UVREL(S)} - 0.5 V \rightarrow V_{UVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 0.97 V$ is applied to the SENSE pin to when V_{UV} or V_{OV} reaches 50% of V_{DD} .

ABLIC Inc.

AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE S-191BxxxxA Series Rev.1.1 00

Table 9

2. HSNT-8(1616)B

 $(Ta = -40^{\circ}C to + 125^{\circ}C unless otherwise specified)$ Test Unit Item Symbol Condition Min. Max. Typ. Circuit $V_{DD} = 5.0 V$, VUVDET(S) VUVDET(S) VUVDET(S) Undervoltage detection voltage*1 VUVDET V 5 × 0.985 $0.6 \text{ V} \leq V_{\text{UVDET(S)}} \leq 4.9 \text{ V}$ × 1.015 $V_{DD} = 5.0 V$, VOVDET(S) VOVDET(S) Overvoltage detection voltage*2 VOVDET(S) V 5 Vovdet × 0.985 $0.7~V \leq V_{\text{OVDET}(S)} \leq 5.5~V$ × 1.015 S-191B06xx to S-191B49xx VUVDET _ V 5 $\times 0.00$ $(V_{UVHYS} = 0\%)$ S-191BA6xx to S-191BE9xx VUVDET VUVDET VUVDET V 5 × 0.03 $(V_{UVHYS} = 3.0\%)$ $\times 0.02$ $\times 0.04$ Undervoltage hysteresis width*3 VUVHYS S-191BG6xx to S-191BL9xx VUVDET VUVDET VUVDET V 5 $\times 0.04$ $(V_{UVHYS} = 5.0\%)$ $\times 0.05$ imes 0.06 S-191BN6xx to S-191BS9xx VUVDET VUVDET VUVDET V 5 $(V_{UVHYS} = 10.0\%)$ imes 0.09× 0.10 × 0.11 S-191B06xx to S-191B49xx VOVDET V 5 _ _ $\times 0.00$ $(V_{OVHYS} = 0\%)$ S-191BA6xx to S-191BE9xx VOVDET VOVDET VOVDET V 5 $(V_{OVHYS} = 3.0\%)$ × 0.02 × 0.03 × 0.04 Overvoltage hysteresis width*3 Vovers S-191BG6xx to S-191BL9xx VOVDET VOVDET VOVDET V 5 $(V_{OVHYS} = 5.0\%)$ $\times 0.04$ × 0.05 imes 0.06 VOVDET S-191BN6xx to S-191BS9xx VOVDET VOVDET V 5 imes 0.09 (Vovhys = 10.0%) × 0.10 imes 0.11 $V_{DD} = 5.0 V$, μΑ Current consumption 1.5 8 Iss₁ 2.6 $V_{\text{SENSE}} = (V_{\text{UVREL}(S)} + V_{\text{OVREL}(S)}) / 2$ Operation voltage Vdd 2.5 6.0 V 5 _ UV pin Nch driver, $V_{DD} = 2.5 \text{ V}, V_{DS}^{*4} = 0.5 \text{ V},$ 2.50 6 mΑ _ $V_{\text{SENSE}} = V_{\text{UVDET}(S)} - 0.5 \text{ V}$ Output current **I**OUT OV pin Nch driver, $V_{DD} = 2.5 V, V_{DS}^{*4} = 0.5 V,$ 2.50 mΑ 6 $V_{\text{SENSE}} = V_{\text{OVDET}(S)} + 0.5 \text{ V}$ UV pin Nch driver, μA $V_{DD} = 6.0 V, V_{UV} = 6.0 V,$ 0.10 6 VSENSE = 6.0 V Leakage current LEAK OV pin Nch driver, μΑ $V_{DD} = 6.0 V, V_{OV} = 6.0 V,$ 0.10 6 V_{SENSE} = 0 V Detection response time*5 10.0 40.0 7 t_{RESET} _ μs Release delay time*6 $C_{D} = 3.3 \text{ nF}$ 8.5 10.0 11.5 7 **t**DELAY ms SENSE pin resistance 3.3 42.5 MΩ 8 RSENSE _ V_{DD} = 2.5 V, V_{CD} = 0.7 V CD pin discharge ON resistance 0.15 0.90 kΩ RCDD _

VUVDET: Actual undervoltage detection voltage value, VUVDET(S): Set undervoltage detection voltage value *1.

VovDET: Actual overvoltage detection voltage value, VovDET(S): Set overvoltage detection voltage value *2. VUVREL: Actual undervoltage release voltage value, VUVREL(S): Set undervoltage release voltage value *3. VovREL: Actual overvoltage release voltage value, VovREL(S): Set overvoltage release voltage value VUVREL and VOVREL are as follows.

Hysteresis width "Unavailable":

VUVREL = VUVDET, VOVREL = VOVDET Hysteresis width "Available": VUVREL = VUVDET + VUVHYS, VOVREL = VOVDET - VOVHYS

V_{DS}: Drain-to-source voltage of the output transistor *4

*5. The time period from when the pulse voltage of $V_{UVDET(S)} + 0.5 \rightarrow V_{UVDET(S)} - 0.5 V$ or $V_{OVDET(S)} - 0.5 V \rightarrow V_{OVDET(S)} + 0.5 V$ 0.5 V is applied to the SENSE pin after V_{SENSE} reaches the release voltage once, until V_{UV} or V_{OV} reaches 50% of V_{DD}.

The time period from when the pulse voltage of $V_{UVREL(S)} - 0.5 V \rightarrow V_{UVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ or $V_{OVREL(S)} + 0.5 V \rightarrow V_{OVREL(S)} \times 1.03 V$ *6. 0.97 V is applied to the SENSE pin to when VUV or VOV reaches 50% of VDD.

ABLIC Inc.

Test Circuits

1. SOT-23-6

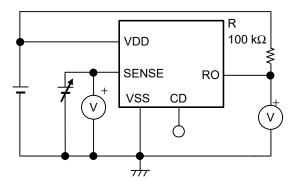


Figure 7 Test Circuit 1

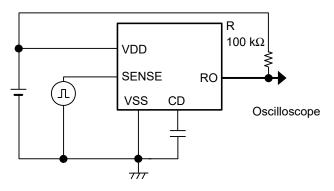


Figure 9 Test Circuit 3

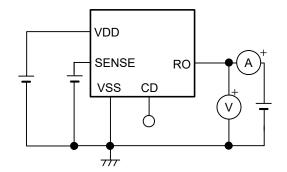


Figure 8 Test Circuit 2

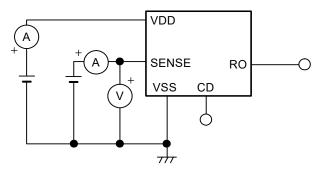


Figure 10 Test Circuit 4

AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE S-191BxxxxA Series Rev.1.1_00

2. HSNT-8(1616)B

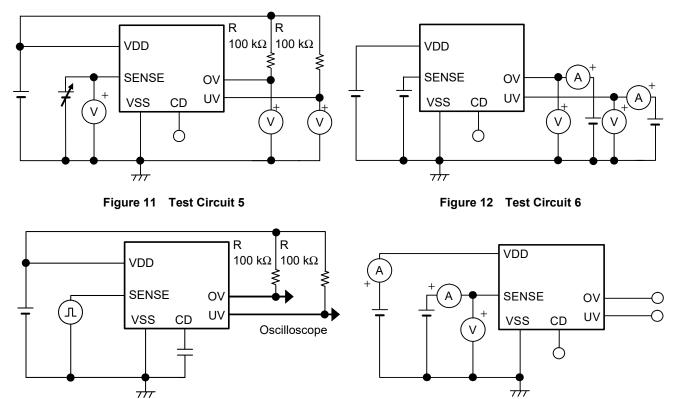
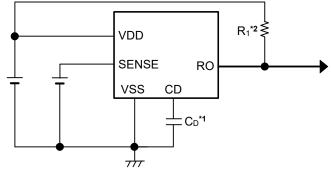
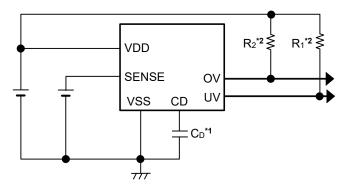



Figure 13 Test Circuit 7

Figure 14 Test Circuit 8

Standard Circuit


1. SOT-23-6

- *1. C_D is a release delay time adjustment capacitor. The C_D should be connected directly to the CD pin and the VSS pin.
- *2. R1 is the external pull-up resistors for the output pin.

2. HSNT-8(1616)B

- *1. C_D is a release delay time adjustment capacitor. The C_D should be connected directly to the CD pin and the VSS pin.
- *2. R_1 , R_2 are the external pull-up resistors for the output pin.

Figure 16

Caution The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation including the temperature characteristics with an actual application to set the constants.

Condition of Application

Release delay time adjustment capacitor (C_D): A ceramic capacitor with capacitance of 0.33 nF or more is recommended.

■ Selection of Release Delay Time Adjustment Capacitor (C_D)

In this IC, the release delay time adjustment capacitor (C_D) is necessary between the CD pin and the VSS pin to adjust the release delay time (t_{DELAY}) of the detector. Refer to "**3**. **Delay circuit**" in "**■ Operation**" for details.

Caution Perform thorough evaluation including the temperature characteristics with an actual application to select C_D .

ABLIC Inc.

Explanation of Terms

1. Detection voltage (VUVDET, VOVDET)

The detection voltage is a SENSE pin voltage at which the output voltage in **Figure 21** or **Figure 22** turns to "L". The detection voltage varies slightly among products of the same specification. The variation of detection voltage between the specified minimum and the maximum is called the detection voltage range (Refer to "**Figure 17 Overvoltage Detection Voltage**", "**Figure 19 Undervoltage Detection Voltage**").

Detection Operation	Detection Voltage	Output Voltage	Detection Voltage Range
Undervoltage detection	VUVDET	V_{RO} / V_{UV} = "H" \rightarrow "L"	VUVDET min. to VUVDET max.
Overvoltage detection	VOVDET	V_{RO} / V_{OV} = "H" \rightarrow "L"	VOVDET min. to VOVDET max.

Table 10

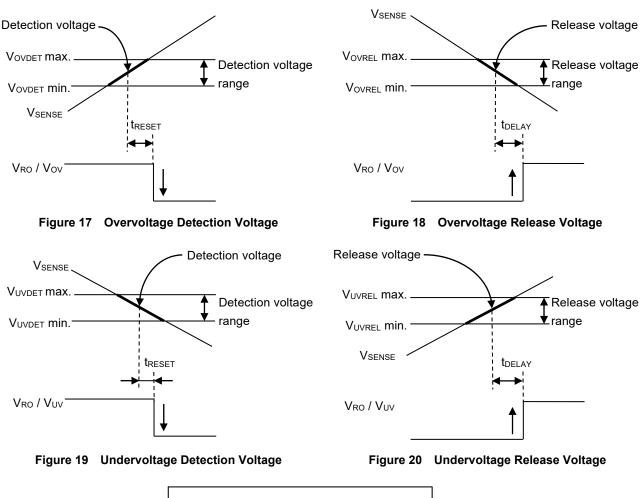
Example: In V_{UVDET} = 4.0 V product, the detection voltage is at any point in the range of 3.940 V \leq V_{UVDET} \leq 4.060 V. This means that some V_{UVDET} = 4.0 V product has V_{UVDET} = 3.940 V and some has V_{UVDET} = 4.060 V.

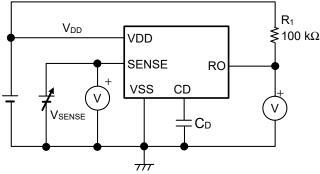
2. Release voltage (VUVREL, VOVREL)

The release voltage is a SENSE pin voltage at which the output voltage in **Figure 21** or **Figure 22** turns to "H". The release voltage varies slightly among products of the same specification. The variation of release voltage between the specified minimum and the maximum is called the release voltage range (Refer to "**Figure 18 Overvoltage Release Voltage**", "**Figure 20 Undervoltage Release Voltage**").

The release voltage becomes the value differs from the detection voltage within the range shown below.

- S-191BA6xx to S-191BE9xx: 2% to 4% (3% typ.)
- S-191BG6xx to S-191BL9xx: 4% to 6% (5% typ.)
- S-191BN6xx to S-191BS9xx: 9% to 11% (10% typ.)


Table 1	1
---------	---


Detection Operation	Release Voltage	Output Voltage	Release Voltage Range
Undervoltage detection	VUVREL	V_{RO} / V_{UV} = "L" \rightarrow "H"	VUVREL min. to VUVREL max.
Overvoltage detection	VOVREL	V_{RO} / V_{OV} = "L" \rightarrow "H"	VOVREL min. to VOVREL max.

Example: For S-191BS0xx, V_{UVDET} = 4.0 V product, the release voltage is at any point in the range of 4.29 V \leq V_{UVREL} \leq 4.51 V despite V_{UVREL} = 4.40 V typ.

This means that S-191BS0xx, V_{UVDET} = 4.0 V product has V_{UVREL} = 4.29 V and some has V_{UVREL} = 4.51 V.

AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE Rev.1.1_00 S-191BxxxxA Series

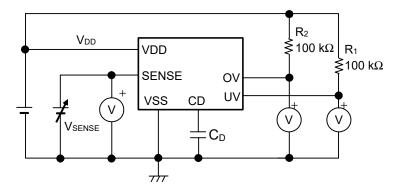


Figure 22 Test Circuit of Detection Voltage and Release Voltage for HSNT-8(1616)B

ABLIC Inc.

3. Hysteresis width (VUVHYS, VOVHYS)

The hysteresis width is the voltage difference between the detection voltage and the release voltage. Setting the hysteresis width between the detection voltage and the release voltage, prevents malfunction caused by noise on the input voltage.

- Undervoltage hysteresis width (VUVHYS): VUVREL VUVDET
- Overvoltage hysteresis width (VOVHYS): VOVDET VOVREL

4. Feed-through current

The feed-through current is a current that flows instantaneously to the VDD pin at the time of detection and release of a voltage detector.

Operation

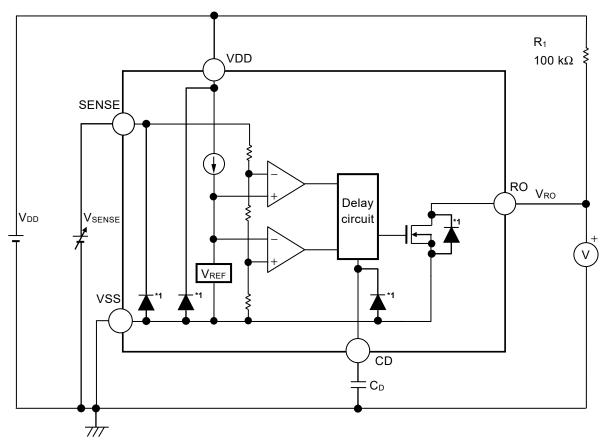

1. Basic operation

Figure 23, Figure 25, Figure 27, and **Figure 29** show that RO pin or UV and OV pins being pulled up by resistors (R₁, R₂) is an example of basic detector block operation.

1.1 SOT-23-6

1. 1. 1 Hysteresis width "Unavailable"

- Undervoltage detection status to release status (undervoltage release status) When the SENSE pin voltage (V_{SENSE}) exceeds the undervoltage release voltage (V_{UVREL} = V_{UVDET}), the RO pin voltage output becomes "H" after release delay time (t_{DELAY}).
- (2) Release status to overvoltage detection status V_{SENSE} rises, and when it exceeds the overvoltage detection voltage (V_{OVDET}), the RO pin output becomes "L" after detection response time (t_{RESET}).
- (3) Overvoltage detection status to release status (overvoltage release status) V_{SENSE} drops, and when it goes below the overvoltage release voltage (V_{OVREL} = V_{OVDET}), the RO pin output changes to "H" after t_{DELAY}.
- (4) Release status to undervoltage detection status V_{SENSE} drops, and when it goes below the undervoltage detection voltage (V_{UVDET}), the RO pin output becomes "L" after t_{RESET} and changes to undervoltage detection status.

*1. Parasitic diode

Figure 23 Operation

AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE S-191BxxxxA Series Rev.1.1_00

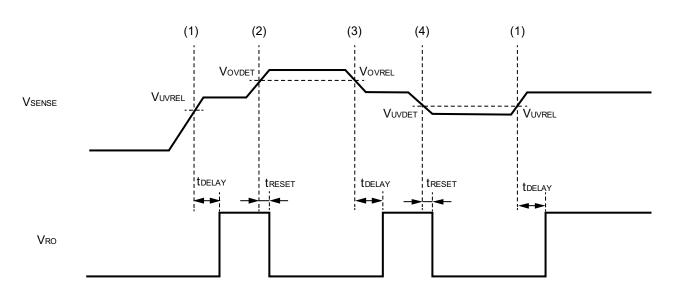
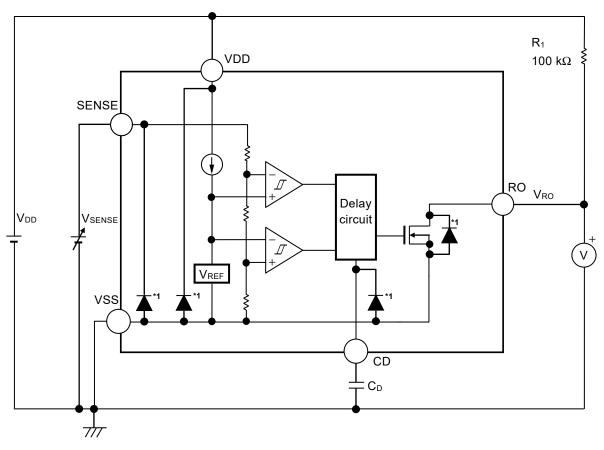



Figure 24 Timing Chart

1. 1. 2 Hysteresis width "Available"

- Undervoltage detection status to release status (undervoltage release status) When the SENSE pin voltage (V_{SENSE}) exceeds the undervoltage release voltage (V_{UVREL} = V_{UVDET} + V_{UVHYS}), the RO pin voltage output becomes "H" after release delay time (t_{DELAY}).
- (2) Release status to overvoltage detection status V_{SENSE} rises, and when it exceeds the overvoltage detection voltage (V_{OVDET}), the RO pin output becomes "L" after detection response time (t_{RESET}).
- (3) Overvoltage detection status to release status (overvoltage release status) V_{SENSE} drops, and when it goes below the overvoltage release voltage (V_{OVREL} = V_{OVDET} - V_{OVHYS}), the RO pin output changes to "H" after t_{DELAY}.
- (4) Release status to undervoltage detection status
 V_{SENSE} drops, and when it goes below the undervoltage detection voltage (V_{UVDET}), the RO pin output becomes
 "L" after t_{RESET} and changes to undervoltage detection status.

*1. Parasitic diode

Figure 25 Operation

AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE S-191BxxxxA Series Rev.1.1_00

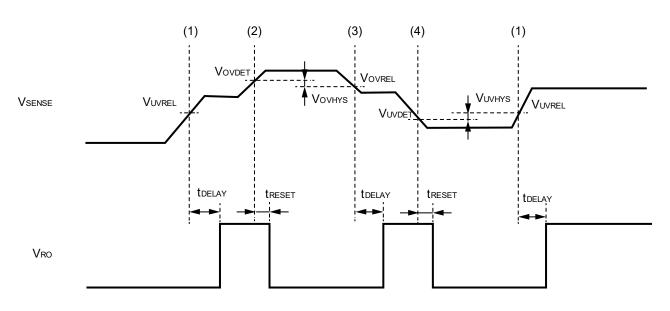
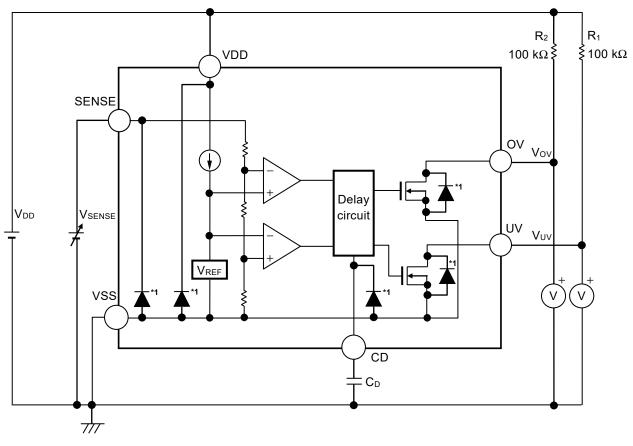
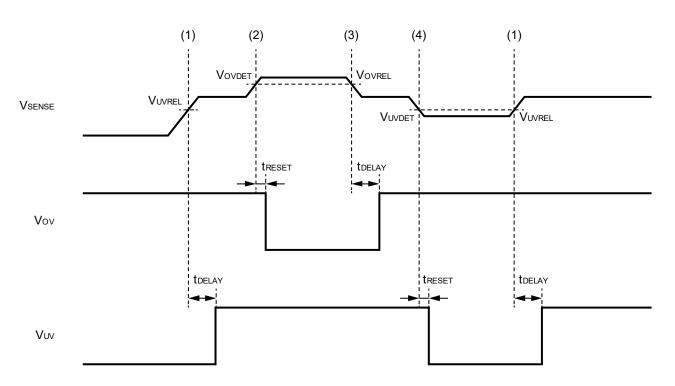



Figure 26 Timing Chart

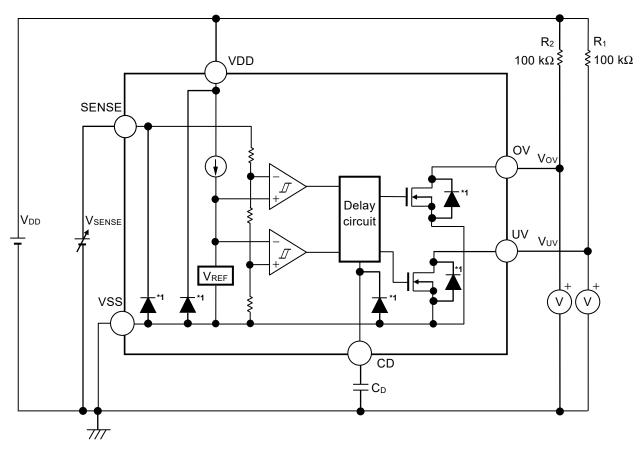
1.2 HSNT-8(1616)B

1. 2. 1 Hysteresis width "Unavailable"

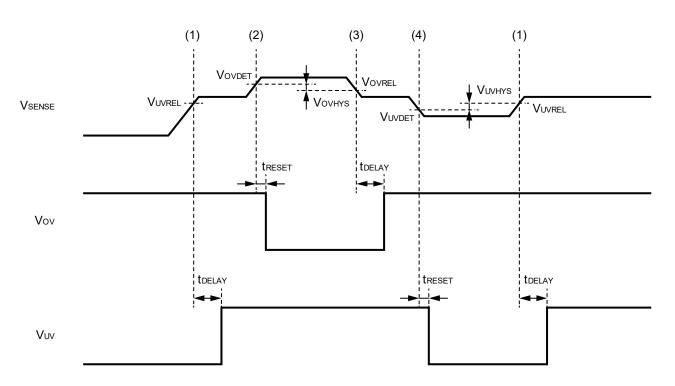

- (1) Undervoltage detection status to release status (undervoltage release status) When the SENSE pin voltage (V_{SENSE}) exceeds the undervoltage release voltage (V_{UVREL} = V_{UVDET}), the UV pin voltage output becomes "H" after release delay time (t_{DELAY}). At this time, the OV pin output stays at "H".
- (2) Release status to overvoltage detection status V_{SENSE} rises, and when it exceeds the overvoltage detection voltage (V_{OVDET}), the OV pin output becomes "L" after detection response time (t_{RESET}). At this time, the UV pin stays at "H".
- (3) Overvoltage detection status to release status (overvoltage release status) V_{SENSE} drops, and when it goes below the overvoltage release voltage (V_{OVREL} = V_{OVDET}), the OV pin output changes to "H" after t_{DELAY}. At this time, the UV pin output stays at "H".
- (4) Release status to undervoltage detection status V_{SENSE} drops, and when it goes below the undervoltage detection voltage (V_{UVDET}), the UV pin output becomes "L" after t_{RESET} and changes to undervoltage detection status. At this time, the OV pin output stays at "H".

*1. Parasitic diode

Figure 27 Operation


AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE S-191BxxxxA Series Rev.1.1_00

1. 2. 2 Hysteresis width "Available"


- (1) Undervoltage detection status to release status (undervoltage release status) When the SENSE pin voltage (V_{SENSE}) exceeds the undervoltage release voltage (V_{UVREL} = V_{UVDET} + V_{UVHYS}), the UV pin voltage output becomes "H" after release delay time (t_{DELAY}). At this time, the OV pin output stays at "H".
- (2) Release status to overvoltage detection status V_{SENSE} rises, and when it exceeds the overvoltage detection voltage (V_{OVDET}), the OV pin output becomes "L" after detection response time (t_{RESET}). At this time, the UV pin stays at "H".
- (3) Overvoltage detection status to release status (overvoltage release status) V_{SENSE} drops, and when it goes below the overvoltage release voltage (V_{OVREL} = V_{OVDET} - V_{OVHYS}), the OV pin output changes to "H" after t_{DELAY}. At this time, the UV pin output stays at "H".
- (4) Release status to undervoltage detection status V_{SENSE} drops, and when it goes below the undervoltage detection voltage (V_{UVDET}), the UV pin output becomes "L" after t_{RESET} and changes to undervoltage detection status. At this time, the OV pin output stays at "H".

*1. Parasitic diode

Figure 29 Operation

AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE S-191BxxxxA Series Rev.1.1_00

2. SENSE pin

The SENSE pin is the input pin for the detection voltage. The power supply VDD pin and SENSE pin, for voltage detection, are divided. Therefore, as long as a voltage is supplied to the VDD pin, the reset signal will be held even if the input voltage to the SENSE pin drops below the minimum operation voltage.

2.1 Error when detection voltage is set externally

The undervoltage detection voltage and the overvoltage detection voltage can be set externally by connecting a node that was resistance-divided by the resistor (R_A) and the resistor (R_B) to the SENSE pin as shown in **Figure 31** and **Figure 32**.

For conventional products without the SENSE pin, external resistor cannot be too large since the resistance-divided node must be connected to the VDD pin. This is because a feed-through current will flow through the VDD pin when it goes from detection to release, and if external resistor is large, problems such as oscillation or larger error in the hysteresis width may occur.

In this IC, R_A and R_B in **Figure 31** and **Figure 32** are easily made larger since the resistance-divided node can be connected to the SENSE pin through which no feed-through current flows. However, be careful of error in the current flowing through the internal resistance (R_{SENSE}) that will occur.

Although R_{SENSE}^{*1} in this IC is large to make the error small, R_A and R_B should be selected such that the error is within the allowable limits.

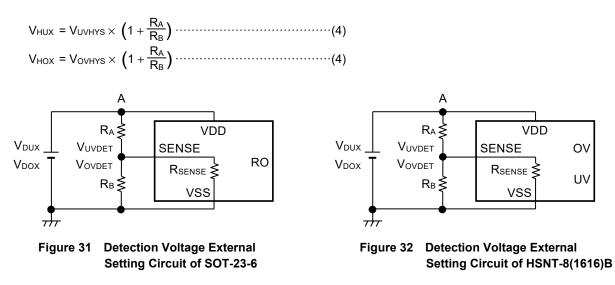
***1.** 3.3 MΩ min.

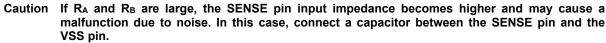
2.2 Selection of R_A and R_B

In **Figure 31** and **Figure 32**, the relation between the external setting undervoltage detection voltage (V_{DUX}) or the overvoltage detection voltage (V_{DOX}) and the actual detection voltage (V_{UVDET} , V_{OVDET}) is ideally calculated by the equation below.

$$V_{\text{DUX}} = V_{\text{UVDET}} \times \left(1 + \frac{R_{\text{A}}}{R_{\text{B}}}\right) \dots (1)$$
$$V_{\text{DOX}} = V_{\text{OVDET}} \times \left(1 + \frac{R_{\text{A}}}{R_{\text{B}}}\right) \dots (1)$$

However, in reality there is an error in the current flowing through R_{SENSE}. When considering this error, the relation between V_{DUX}, V_{DOX}, V_{UVDET} and V_{OVDET} is calculated as follows.


$$\begin{split} V_{\text{DUX}} &= V_{\text{UVDET}} \times \left(1 + \frac{R_{\text{A}}}{R_{\text{B}} \parallel \text{R}_{\text{SENSE}}}\right) \\ &= V_{\text{UVDET}} \times \left(1 + \frac{R_{\text{A}}}{R_{\text{B}} \times \text{R}_{\text{SENSE}}}\right) \\ &= V_{\text{UVDET}} \times \left(1 + \frac{R_{\text{A}}}{R_{\text{B}}}\right) + \frac{R_{\text{A}}}{R_{\text{SENSE}}} \times V_{\text{UVET}} \quad \dots \dots \dots (2) \\ V_{\text{DOX}} &= V_{\text{OVDET}} \times \left(1 + \frac{R_{\text{A}}}{R_{\text{B}}}\right) + \frac{R_{\text{A}}}{R_{\text{SENSE}}} \times V_{\text{OVET}} \quad \dots \dots (2) \end{split}$$


By using equations (1) and (2), the error is calculated as $V_{UVDET} \times \frac{R_A}{R_{SENSE}}$, $V_{OVDET} \times \frac{R_A}{R_{SENSE}}$. The error rate is calculated as follows by dividing the error by the right-hand side of equation (1).

$$\frac{R_A \times R_B}{R_{SENSE} \times (R_A + R_B)} \times 100 \ [\%] = \frac{R_A \parallel R_B}{R_{SENSE}} \times 100 \ [\%] \quad \cdots (3)$$

As seen in equation (3), the smaller the resistance values of R_A and R_B compared to R_{SENSE}, the smaller the error rate becomes.

Also, the relation between the external setting undervoltage hysteresis width (V_{HUX}) or the overvoltage hysteresis width (V_{HOX}) and the hysteresis width (V_{UVHYS} , V_{OVHYS}) is calculated by equation below. Error due to R_{SENSE} also occurs to the relation in a similar way to the detection voltage.

3. Delay circuit

The delay circuit comes with a function for adjusting the release delay time (t_{DELAY}) from when the SENSE pin voltage (V_{SENSE}) enters the state in **Table 12** and until the output pin inverts.

Table	12
-------	----

Release operation	Status	Output Pin
Undervoltage release	Undervoltage release voltage (VUVREL = VUVDET + VUVHYS) or more	RO pin / UV pin
Overvoltage release	Overvoltage release voltage (VovRel = VovDet - VovHys) or lower	RO pin / OV pin

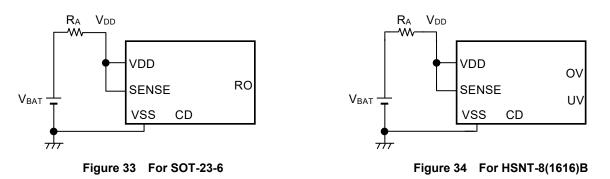
 t_{DELAY} is determined by the delay coefficient, the release delay time adjustment capacitor (C_D) and the release delay time when the CD pin is open (t_{DELAY0}). They are calculated by the equations below.

 t_{DELAY} [ms] = Delay coefficient × C_D [nF] + t_{DELAY0} [ms]

Table 13					
Operation	Delay Coefficient				
Temperature	Min.	Тур.	Max.		
Ta = +125°C	2.64	2.90	3.24		
Ta = +25°C	2.67	3.00	3.18		
Ta = –40°C	2.72	3.00	3.34		

Ta	ab	le	1	4

Operation	Release Delay T	Release Delay Time when CD Pin is Open (t _{DELAY0})				
Temperature	Min.	Тур.	Max.			
Ta = +125°C	0.05	0.09	0.24			
Ta = +25°C	0.05	0.10	0.22			
Ta = –40°C	0.06	0.11	0.27			

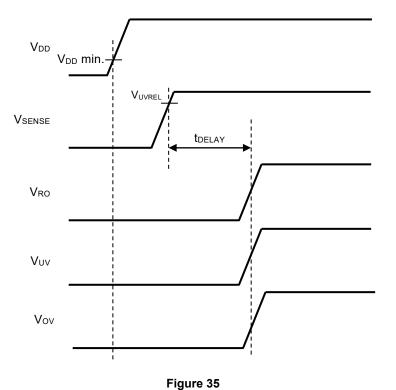

- Caution 1. Mounted board layout should be made in such a way that no current flows into or flows from the CD pin since the impedance of the CD pin is high, otherwise correct delay time cannot be provided.
 - 2. There is no limit for the capacitance of C_D as long as the leakage current of the capacitor can be ignored against the built-in constant current value (approximately 160 nA). The leakage current may cause error in delay time. When the leakage current is larger than the built-in constant current, no detect or release takes place.
 - The above equations will not guarantee successful operation. Determine the capacitance of C_D through thorough evaluation including temperature characteristics in the actual usage conditions.

Usage Precautions

1. Feed-through current at the time of detection and release

In this IC, a feed-through current flows instantaneously at the time of detection and release. Therefore, if the input impedance is increased, oscillation may occur due to the voltage drop caused by the feed-through current. When this IC is used in the configuration shown in **Figure 33** and **Figure 34**, the input impedance is recommended to be 1 k Ω or less.

Perform a sufficient evaluation including the temperature characteristics under the actual operating conditions.



2. Power on sequence

Turn on the power in one of the following two procedures.

- (1) Order of VDD pin and SENSE pin (Refer to Figure 35)
- (2) VDD pin and SENSE pin at the same time

When $V_{OVDET} \ge V_{SENSE} \ge V_{UVREL}$ applies, both the overvoltage output voltage (V_{OV}) and the undervoltage output voltage (V_{UV}) become "H", and the detector enters release status.

Caution When the SENSE pin is turned on before the VDD pin, a release may mistakenly occur even if V_{SENSE} is less than V_{UVREL}.

3. Relationship between overvoltage detection voltage, undervoltage detection voltage and hysteresis width

The nominal voltage range ($V_{NOMINAL}$) monitored by customers is defined as shown in **Figure 36**. To ensure an appropriate $V_{NOMINAL}$ value, set the overvoltage detection voltage and undervoltage detection voltage considering the detection voltage variation, hysteresis width, and released voltage variation. The relationship among $V_{NOMINAL}$, maximum value of undervoltage release voltage (V_{UVREL} max.) and the minimum value of the overvoltage release voltage (V_{OVREL} min.) must satisfy equation (1).

> Vovrel min. Vnominal

VUVREL max.

Figure 36 VNOMINAL > 0

The equations below show the relationship among V_{UVREL} max., V_{OVREL} min., the set undervoltage detection voltage ($V_{UVDET(S)}$), the set overvoltage detection voltage ($V_{OVDET(S)}$), the undervoltage hysteresis width (V_{UVHYS}), and the overvoltage hysteresis width (V_{OVHYS}).

 $V_{\text{UVREL}} \text{ max.} = V_{\text{UVDET}} \text{ max.} \times (1 + V_{\text{UVHYS}} \text{ max.}) = V_{\text{UVDET(S)}} \times 1.015 \times (1 + V_{\text{UVHYS}} + 0.01) \cdots (2)$ $V_{\text{OVREL}} \text{ min.} = V_{\text{OVDET}} \text{ min.} \times (1 - V_{\text{OVHYS}} \text{ max.}) = V_{\text{OVDET(S)}} \times 0.985 \times (1 - V_{\text{OVHYS}} - 0.01) \cdots (3)$

Based on equations (2) and (3), the following equation must be satisfied regarding VNOMINAL, VOVDET(S) and VUVDET(S).

 $V_{\text{NOMINAL}} = V_{\text{OVDET}(S)} \times 0.985 \times (1 - V_{\text{OVHYS}} - 0.01) - V_{\text{UVDET}(S)} \times 1.015 \times (1 + V_{\text{UVHYS}} + 0.01) > 0 \dots (4)$

For example, calculating if it is possible to set $V_{UVDET(S)} = 3.0 \text{ V}$, $V_{OVDET(S)} = 3.6 \text{ V}$, and $V_{OVHYS} = V_{UVHYS} = 5\%$ typ. (accuracy ±1%), the following equation is generated.

 $V_{\text{NOMINAL}} = 3.6 \text{ V} \times 0.985 \times (1 - 0.06) - 3.0 \text{ V} \times 1.015 \times (1 + 0.06) = 0.106 \text{ V}$

Since V_{NOMINAL} is greater than 0, it can be determined that it is possible to set.

 $V_{\text{NOMINAL}} = V_{\text{OVREL}} \min - V_{\text{UVREL}} \max > 0 \cdots (1)$

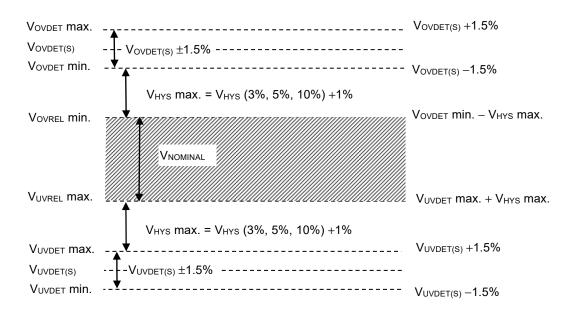
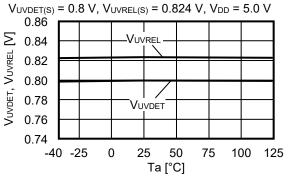
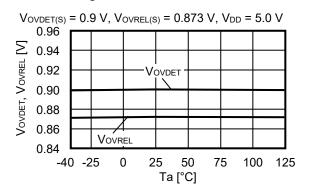


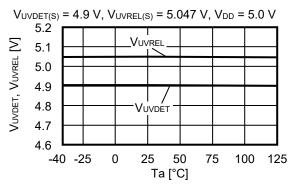
Figure 37

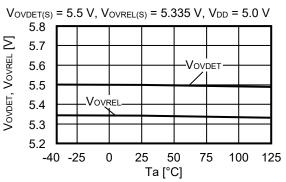
ABLIC Inc.


Precautions

- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- Because the SENSE pin has a high impedance, malfunctions may occur due to noise. Be careful of wiring adjoining SENSE pin wiring in actual applications.
- When designing for mass production using an application circuit described herein, the product deviation and temperature characteristics should be taken into consideration. ABLIC Inc. shall not bear any responsibility for patent infringements related to products using the circuits described herein.
- ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.


Characteristics (Typical Data)


1. Detection voltage (VUVDET, VOVDET), Release voltage (VUVREL, VOVREL) vs. Temperature (Ta)


1.1 Undervoltage detection

1.2 Overvoltage detection

 $V_{UVDET(S)} = 4.9 V, V_{UVREL(S)} = 5.047 V$

Ta = +125°C

Ta = +125°C

6

5

Ta = -40°C

Ta = +25°C

4

VDD [V]

2. Detection voltage (VUVDET, VOVDET), Release voltage (VUVREL, VOVREL) vs. Power supply voltage (VDD)

5.15

5.10

5.05

5.00

4.95

4.90

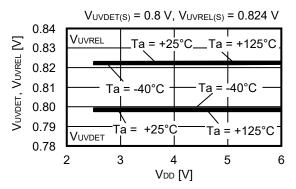
4.85

VUVDET, VUVREL [V]

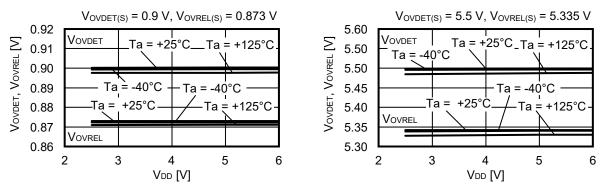
VUVREL

VUVDET

2

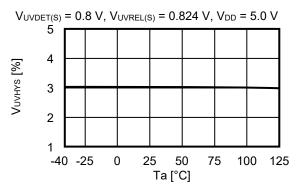

 $\langle |$

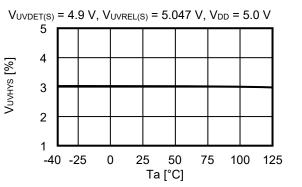
Ta = +25°C


3

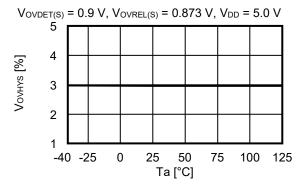
Ta = -40°C

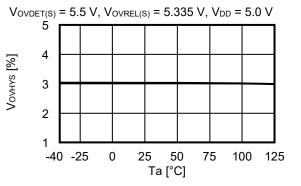
2.1 Undervoltage detection

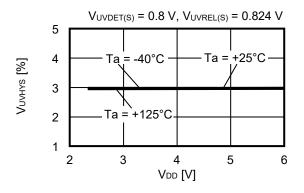

2.2 Overvoltage detection

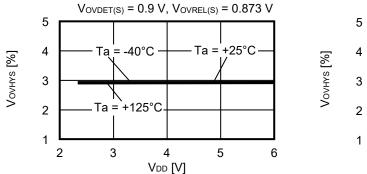


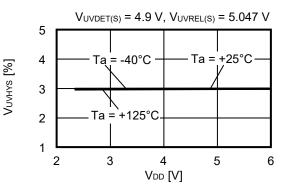
ABLIC Inc.

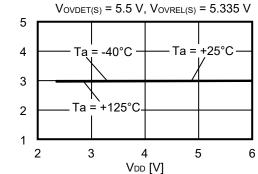

3. Hysteresis width (VUVHYS, VOVHYS) vs. Temperature (Ta)

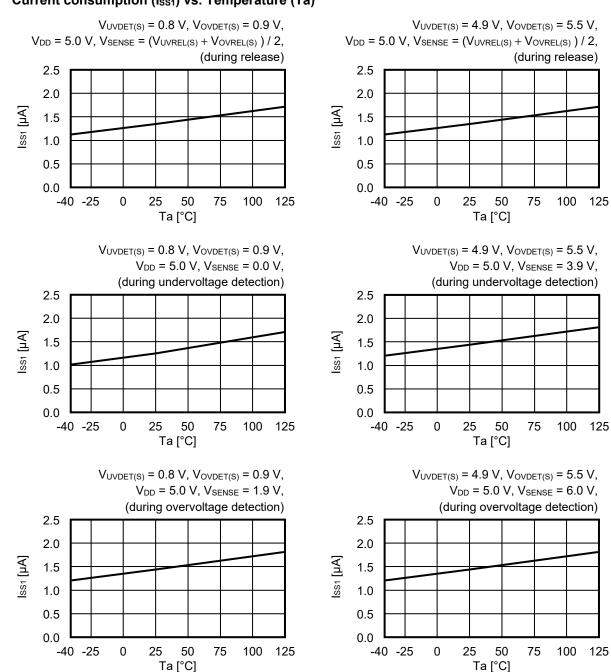

3.1 Undervoltage detection


3.2 Overvoltage detection

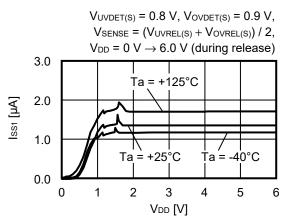


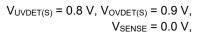

4. Hysteresis width (VUVHYS, VOVHYS) vs. Power supply voltage (VDD)


4.1 Undervoltage detection

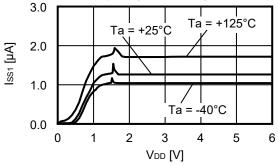


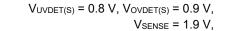
4.2 Overvoltage detection



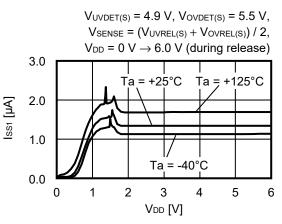


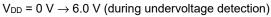


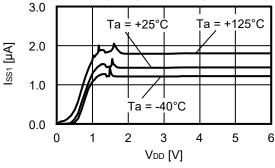

AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE S-191BxxxxA Series Rev.1.1_00

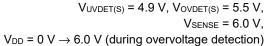


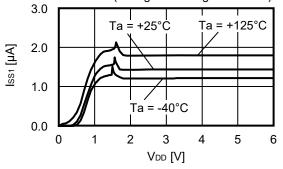
6. Current consumption (I_{SS1}) vs. Power supply voltage (V_{DD})



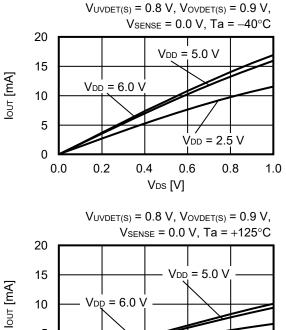


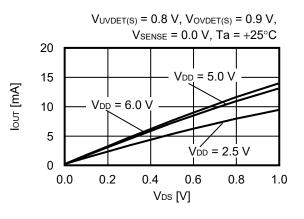




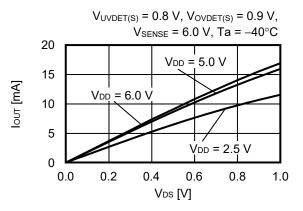


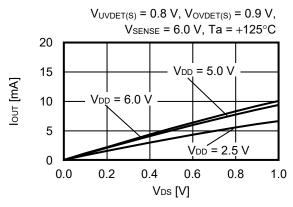
 $V_{UVDET(S)} = 4.9 \text{ V}, V_{OVDET(S)} = 5.5 \text{ V},$ $V_{SENSE} = 3.9 \text{ V},$

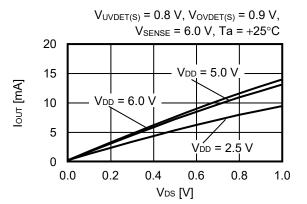




7. Nch transistor output current (IOUT) vs. VDS

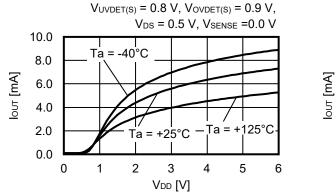

7.1 Undervoltage detection

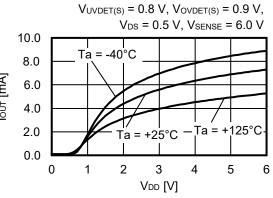




lour [mA] 5 VDD = 2.5 V 0 0.0 0.2 0.4 0.6 0.8 1.0 VDS [V]

7.2 Overvoltage detection

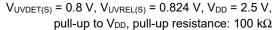


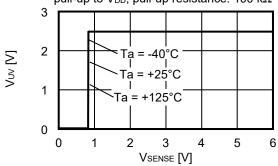

Remark V_{DS}: Drain-to-source voltage of the output transistor

8. Nch transistor output current (IOUT) vs. Power supply voltage (VDD)

8.1 Undervoltage detection

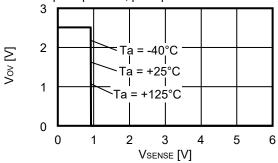
8.2 Overvoltage detection

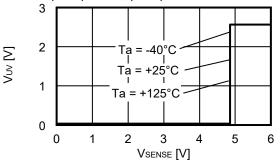




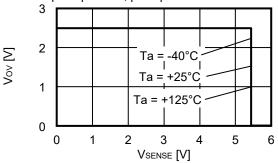
Remark V_{DS}: Drain-to-source voltage of the output transistor

9. Output voltage (Vuv, Vov) vs. SENSE pin voltage (VSENSE)

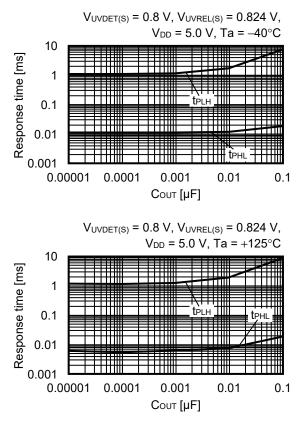

9.1 Undervoltage detection

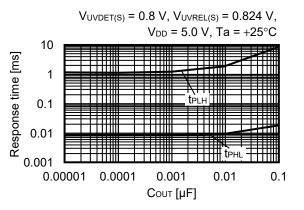


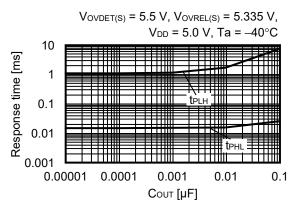
9.2 Overvoltage detection

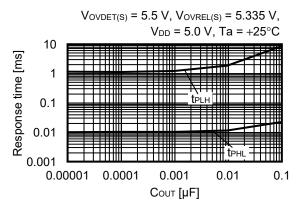

 $\label{eq:Vovdet(s)} \begin{array}{l} \text{V}_{\text{OVDET}(s)} = 0.9 \text{ V}, \text{ } \text{V}_{\text{OVREL}(s)} = 0.873 \text{ V}, \text{ } \text{V}_{\text{DD}} = 2.5 \text{ V}, \\ \text{pull-up to } \text{V}_{\text{DD}}, \text{ pull-up resistance: } 100 \text{ k}\Omega \end{array}$

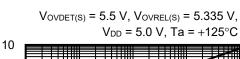
 $V_{UVDET(S)}$ = 4.9 V, $V_{UVREL(S)}$ = 5.047 V, V_{DD} = 2.5 V, pull-up to V_{DD} , pull-up resistance: 100 k Ω

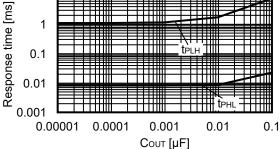



 $V_{OVDET(S)}$ = 5.5 V, $V_{OVREL(S)}$ = 5.335 V, V_{DD} = 2.5 V, pull-up to V_{DD} , pull-up resistance: 100 k Ω

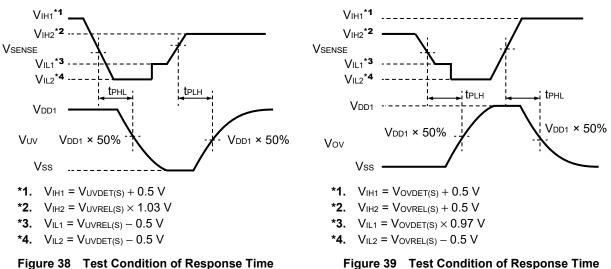

10. Dynamic response vs. Output pin capacitance (C_{OUT}) (CD pin = 0.33 nF)


10.1 Undervoltage detection





10.2 Overvoltage detection



ABLIC Inc.

AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE S-191BxxxxA Series Rev.1.1_00

(Undervoltage Detection)

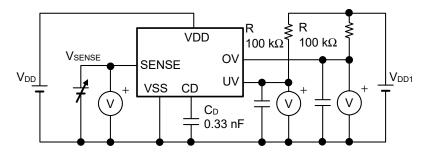
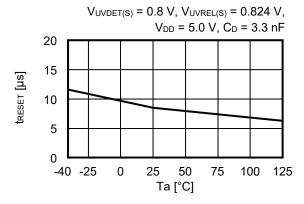
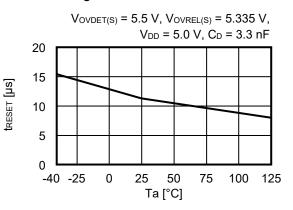


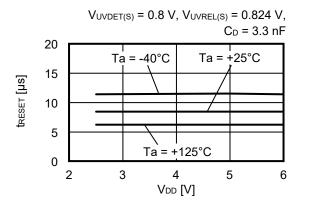
Figure 40 Test Circuit of Response Time

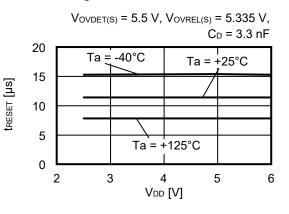

- Caution 1. The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation including the temperature characteristics with an actual application to set the constants.
 - 2. When the CD pin is open, a double pulse may appear at release. To avoid the double pulse, attach 0.33 nF or more capacitor to the CD pin.


Reference Data

1. Detection response time (tRESET) vs. Temperature (Ta)

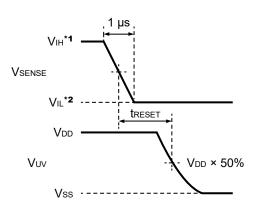
1.1 Undervoltage detection


1.2 Overvoltage detection

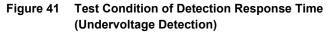


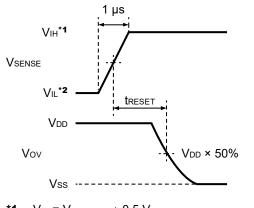
2. Detection response time (t_{RESET}) vs. Power supply voltage (V_{DD})

2.1 Undervoltage detection



2.2 Overvoltage detection




Vdd

ν

- ***1.** $V_{IH} = V_{UVDET(S)} + 0.5 V$
- *2. $V_{IL} = V_{UVDET(S)} 0.5 V$

- ***1.** $V_{IH} = V_{OVDET(S)} + 0.5 V$
- *2. $V_{IL} = V_{OVDET(S)} 0.5 V$

Figure 43 Test Condition of Detection Response Time (Overvoltage Detection)

VDD

SENSE

vss

Vsense

R

ν

UV

CD

 C_{D}

 $100 \ k\Omega$

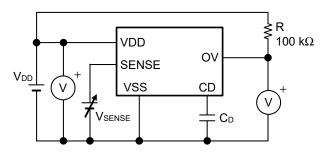
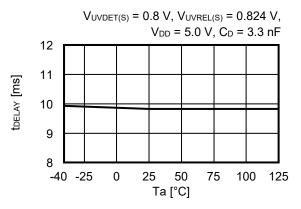
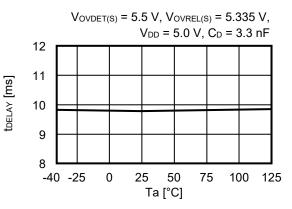
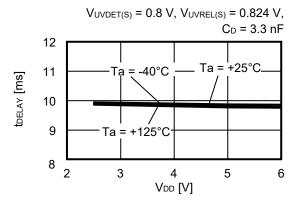



Figure 44 Test Circuit of Detection Response Time (Overvoltage Detection)

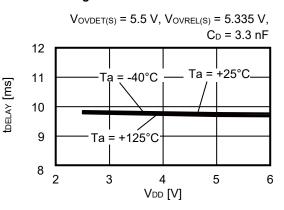

Caution The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation including the temperature characteristics with an actual application to set the constants.

3. Release delay time (t_{DELAY}) vs. Temperature (Ta)

3.1 Undervoltage detection

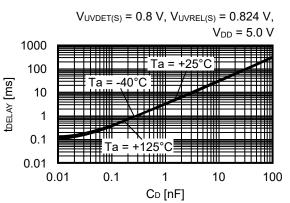


3.2 Overvoltage detection

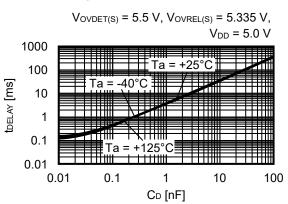


4. Release delay time (t_{DELAY}) vs. Power supply voltage (V_{DD})

4.1 Undervoltage detection

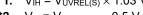


4. 2 Overvoltage detection

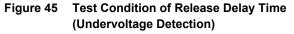


5. Release delay time (t_{DELAY}) vs. CD pin capacitance (C_D) (Without output pin capacitance)


5.1 Undervoltage detection



5. 2 Overvoltage detection



AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE S-191BxxxxA Series Rev.1.1_00

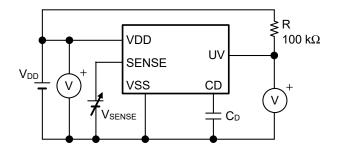


Figure 46 Test Circuit of Release Delay Time (Undervoltage Detection)

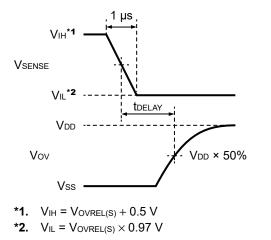


Figure 47 Test Condition of Release Delay Time (Overvoltage Detection)

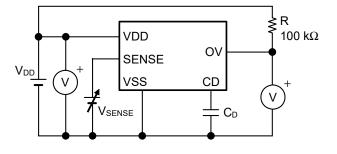
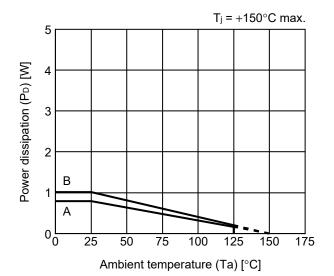
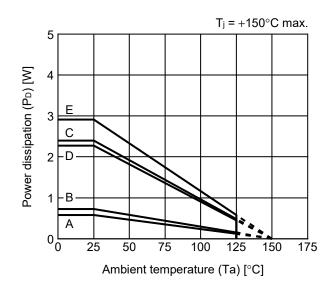


Figure 48 Test Circuit of Release Delay Time (Overvoltage Detection)


Caution The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation including the temperature characteristics with an actual application to set the constants.

AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE Rev.1.1_00 S-191BxxxxA Series


Power Dissipation

SOT-23-6

HSNT-8(1616)B

Board	Power Dissipation (P _D)
Α	0.79 W
В	1.01 W
С	_
D	_
E	_

Board	Power Dissipation (P _D)
А	0.58 W
В	0.73 W
С	2.40 W
D	2.27 W
E	2.91 W

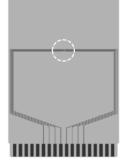
SOT-23-3/3S/5/6 Test Board

) IC Mount Area

(1) Board A

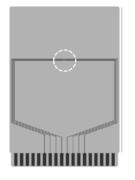
Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		2
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070
	2	-
	3	-
	4	74.2 x 74.2 x t0.070
Thermal via		-

(2) Board B

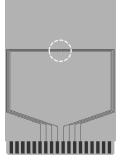

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070
	2	74.2 x 74.2 x t0.035
	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

No. SOT23x-A-Board-SD-2.0

HSNT-8(1616)B Test Board


) IC Mount Are

(1) Board A

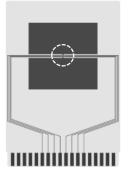

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		2
	1	Land pattern and wiring for testing: t0.070
Copper foil layer [mm]	2	-
Copper loir layer [mm]	3	-
	4	74.2 x 74.2 x t0.070
Thermal via		-

(2) Board B

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070
	2	74.2 x 74.2 x t0.035
	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

(3) Board C

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070
	2	74.2 x 74.2 x t0.035
	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		Number: 4 Diameter: 0.3 mm

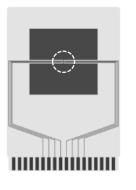

enlarged view

No. HSNT8-C-Board-SD-1.0

HSNT-8(1616)B Test Board

IC Mount Are

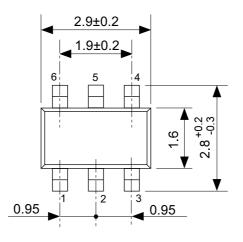
(4) Board D

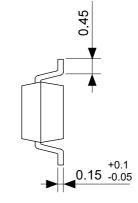


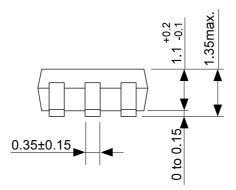
Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
Copper foil layer [mm]	1	Pattern for heat radiation: 2000mm ² t0.070
	2	74.2 x 74.2 x t0.035
	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

enlarged view

(5) Board E

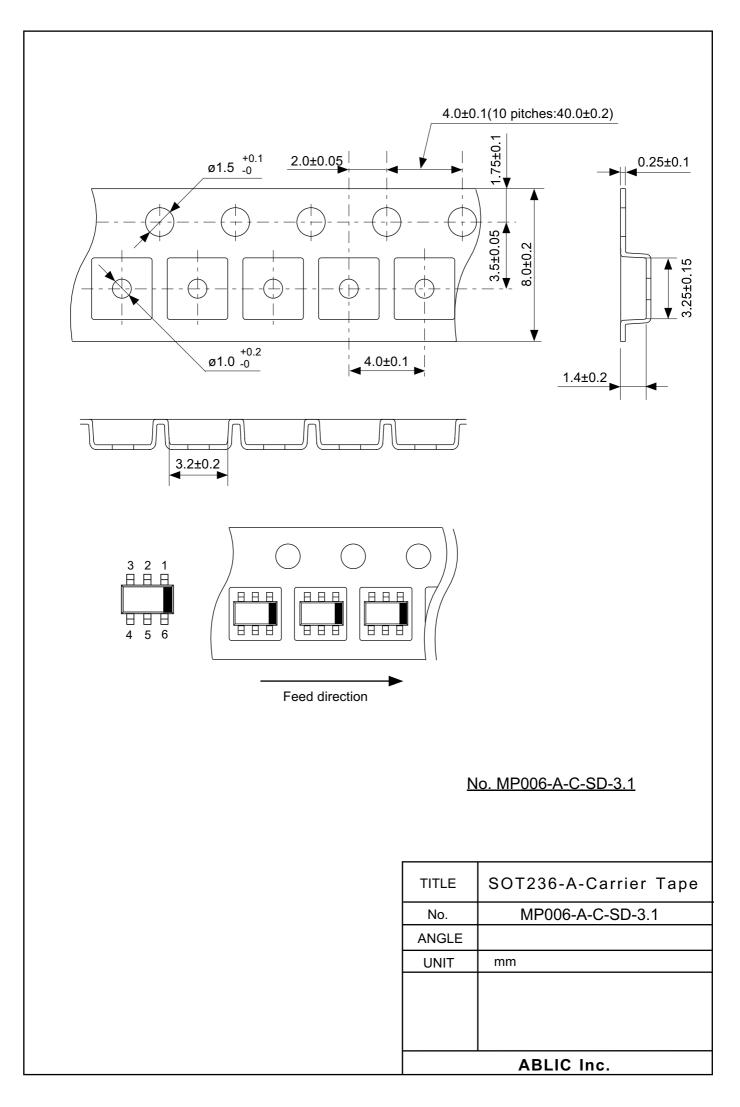


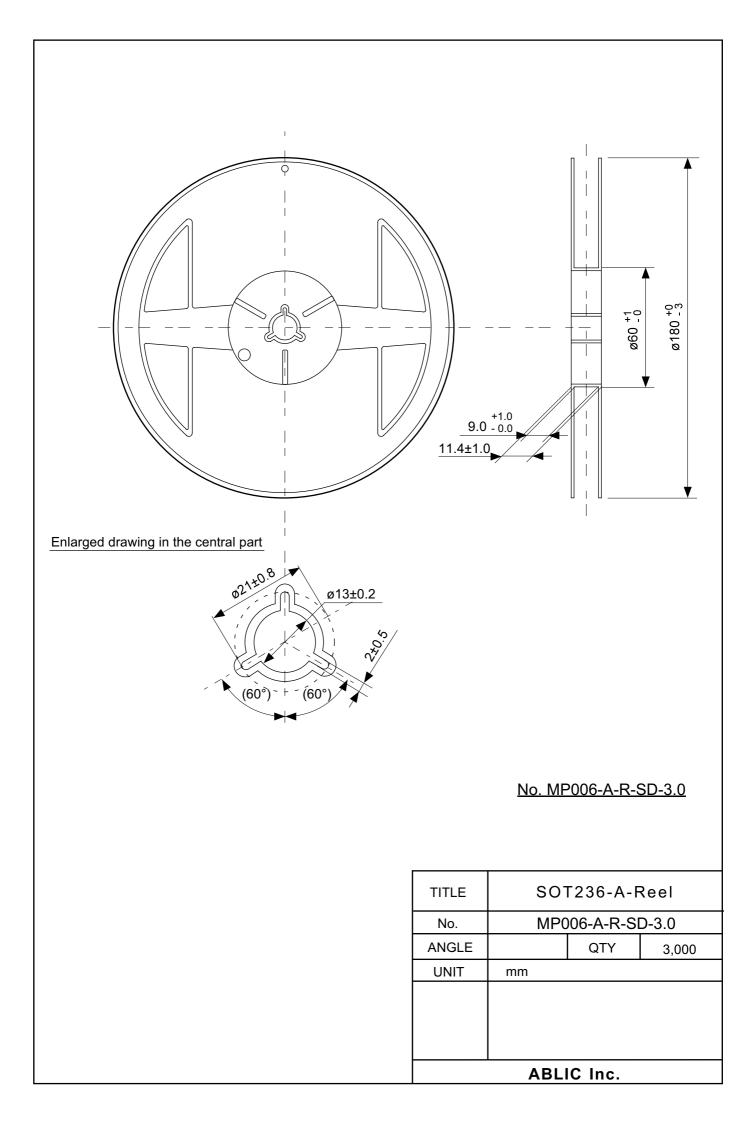

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
Copper foil layer [mm]	1	Pattern for heat radiation: 2000mm ² t0.070
	2	74.2 x 74.2 x t0.035
	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		Number: 4 Diameter: 0.3 mm

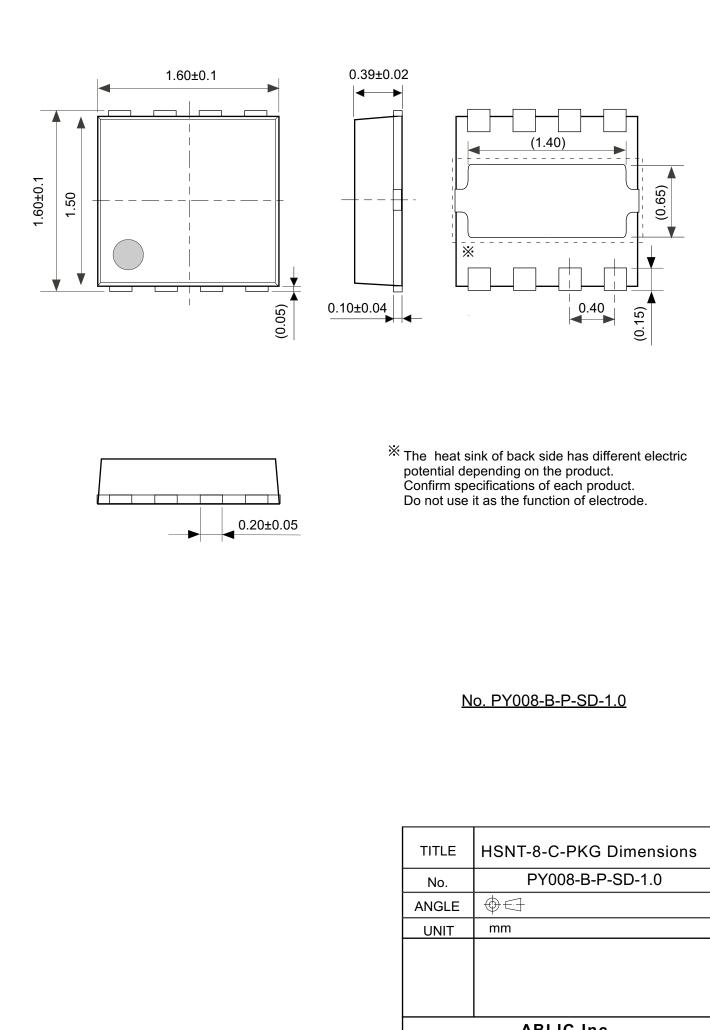


enlarged view

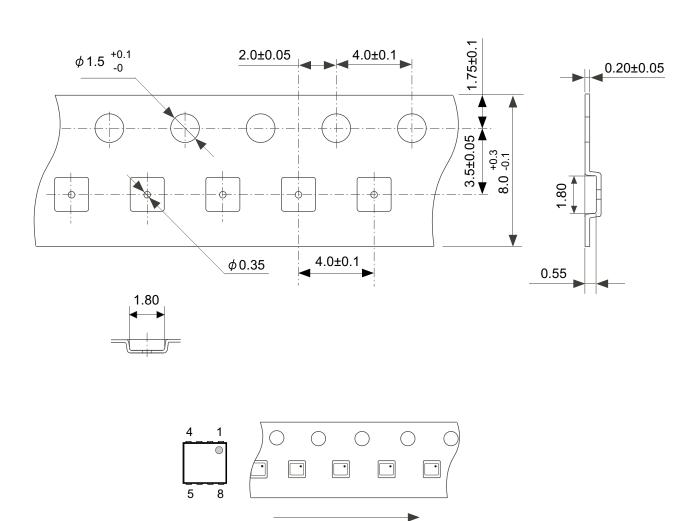
No. HSNT8-C-Board-SD-1.0

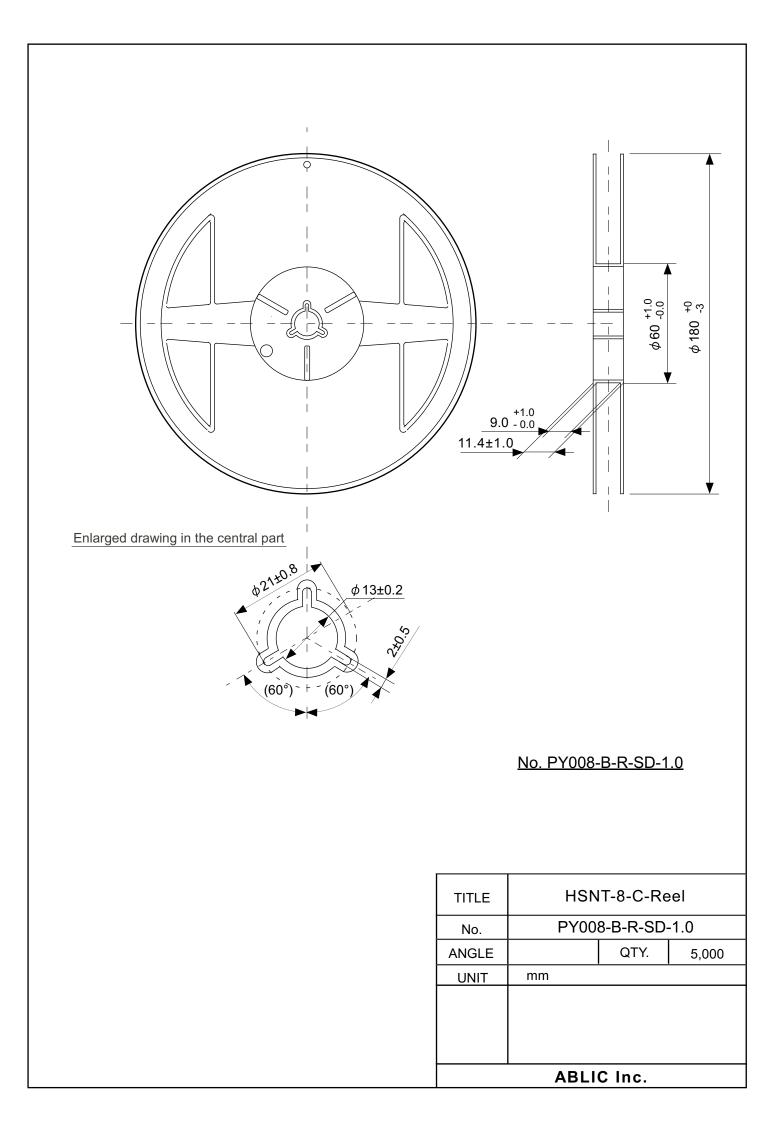


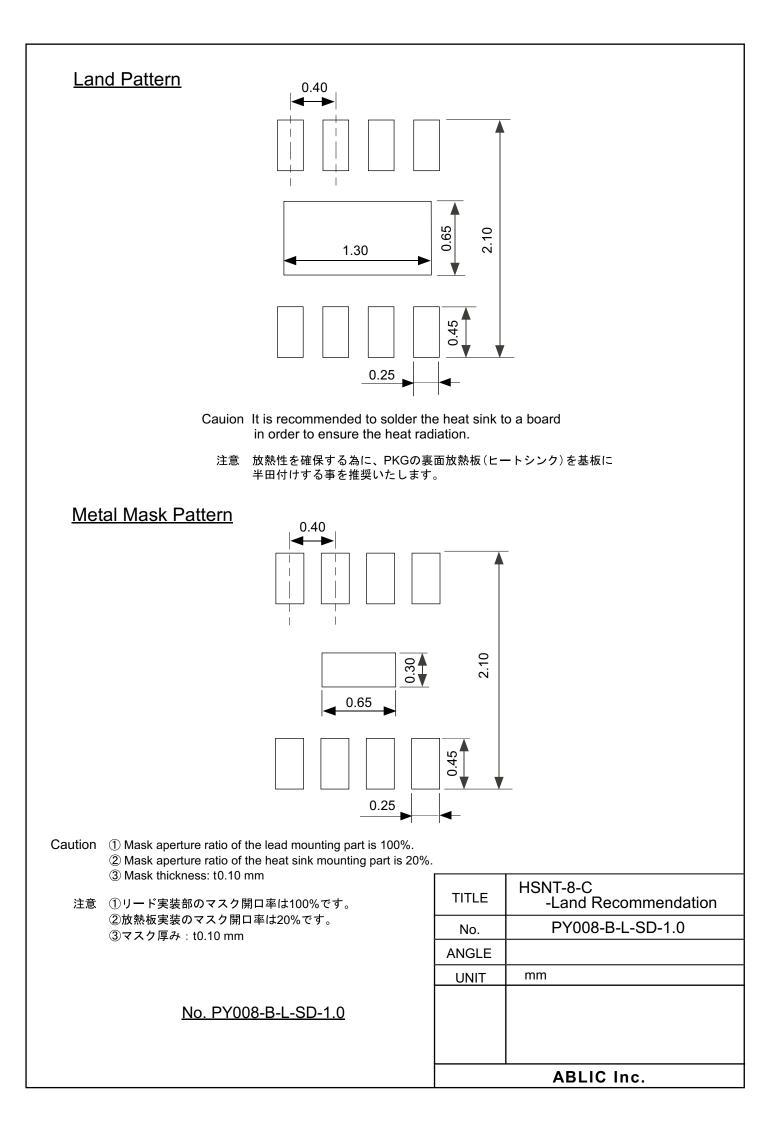




No. MP006-A-P-SD-2.1


TITLE	SOT236-A-PKG Dimensions	
No.	MP006-A-P-SD-2.1	
ANGLE	$\bigoplus \leftarrow]$	
UNIT	mm	
ABLIC Inc.		


ABLIC Inc.



Feed direction

No. PY008-B-C-SD-1.0

TITLE	HSNT-8-C-Carrier Tape		
No.	PY008-B-C-SD-1.0		
ANGLE			
UNIT	mm		
	ABLIC Inc.		

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.
- 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.
- 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.
- 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.
- 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.

The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility.

- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc.
- 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative.
- 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.

2.4-2019.07