

S-191AxxxxA Series

www.ablic.com

AUTOMOTIVE, 125°C OPERATION, 6 V, WINDOW VOLTAGE DETECTOR WITH FAST DETECTION RESPONSE AND MANUAL RESET FUNCTION

© ABLIC Inc., 2023 Rev.1.1_00

This IC, developed using CMOS technology, is a high-accuracy window voltage detector that detects undervoltage and overvoltage. The detection voltage and release voltage are fixed internally with an accuracy of $\pm 1.5\%$.

Apart from the power supply pin, the detection voltage input pin (SENSE pin) is also prepared, so the output is stable even if the SENSE pin voltage (V_{SENSE}) falls to 0 V.

The release signal can be delayed by setting a capacitor externally, and the release delay time accuracy is $\pm 15\%$ ($C_D = 3.3$ nF). This IC also has a manual reset function. The manual reset function changes the comparator input voltage of the internal circuit, and the detector is forcibly put into the detection status. This enables a diagnosis of anomalies in the detector, such as erroneous release.

The output form is Nch open-drain output.

ABLIC Inc. offers FIT rate calculated based on actual customer usage conditions in order to support customer functional safety design.

For more information regarding our FIT rate calculation, contact our sales representatives.

Caution This product can be used in vehicle equipment and in-vehicle equipment. Before using the product for these purposes, it is imperative to contact our sales representatives.

■ Features

Detection voltage:
 Undervoltage detection voltage
 Overvoltage detection voltage
 0.6 V to 4.9 V (0.05 V step)
 0.7 V to 5.5 V (0.05 V step)

Detection voltage accuracy: Undervoltage detection voltage ±1.5%
 Overvoltage detection voltage ±1.5%

• Hysteresis width selectable from "Available" / "Unavailable": "Available": 3.0%, 5.0%, 10.0%

"Unavailable": 0%

• Detection response time: 10.0 μs typ.

Manual reset function:
 MR pin input logic: Active "L"

• Release delay time accuracy: $\pm 15\%$ (C_D = 3.3 nF) • Output form: $\pm 15\%$ (C_D = 3.3 nF)

Current consumption: 1.5 μA typ.
 Operation voltage range: 2.5 V to 6.0 V

• Operation temperature range: Ta = -40°C to +125°C

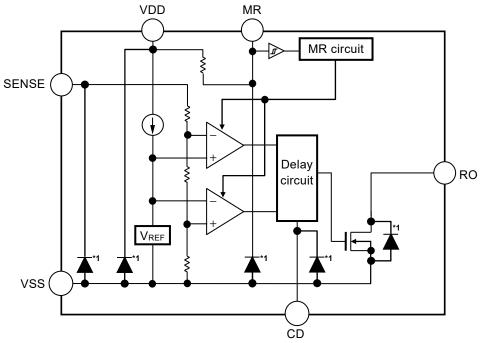
• Lead-free (Sn 100%), halogen-free

• AEC-Q100 in process*1

*1. Contact our sales representatives for details.

Applications

- Overvoltage detection of power supply for automotive electric component
- · Voltage monitoring of automotive ECUs, ADAS and other systems that require failure detection
- For automotive use (engine, transmission, suspension, ABS, related-devices for EV / HEV / PHEV, etc.)


Packages

- SOT-23-6
- HSNT-8(1616)B

■ Block Diagrams

1. SOT-23-6

1. 1 Hysteresis width "Unavailable"

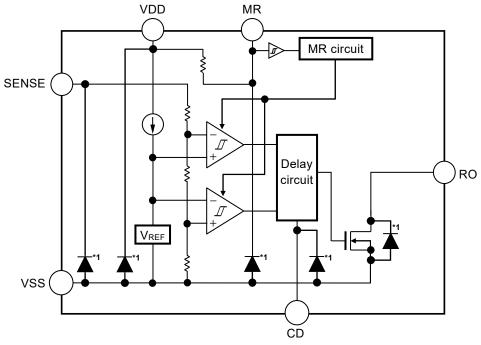

*1. Parasitic diode

Figure 1

Product Name	Hysteresis Width (Vuvhys, Vovhys)	MR Pin Input Logic	RO Pin Output Form	RO Pin Output Logic
S-191A0xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191A1xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191A2xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191A3xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191A4xxxA	0%	Active "L"	Nch open-drain output	Active "L"

2 ABLIC Inc.

1. 2 Hysteresis width "Available"

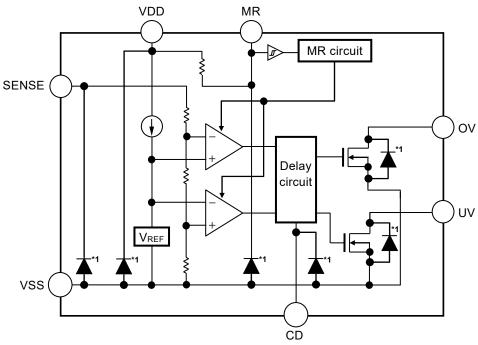
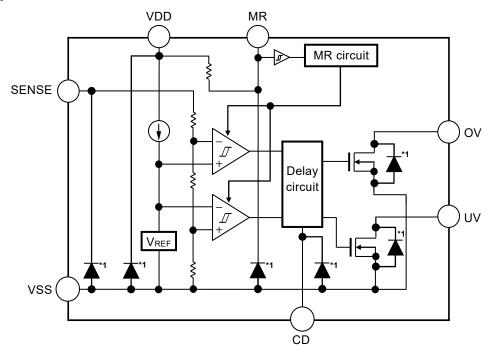

*1. Parasitic diode

Figure 2

Product Name	Hysteresis Width (Vuvhys, Vovhys)	MR Pin Input Logic	RO Pin Output Form	RO Pin Output Logic
S-191AAxxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191ABxxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191ACxxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191ADxxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191AExxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191AGxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191AHxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191AJxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191AKxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191ALxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191ANxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"
S-191APxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"
S-191AQxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"
S-191ARxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"
S-191ASxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"

2. HSNT-8(1616)B

2. 1 Hysteresis width "Unavailable"



*1. Parasitic diode

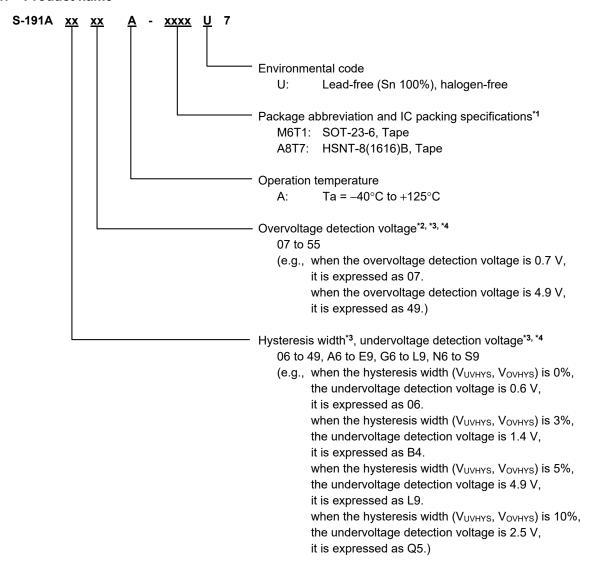
Figure 3

Product Name	Hysteresis Width (Vuvhys, Vovhys)	MR Pin Input Logic	UV, OV Pin Output Form	UV, OV Pin Output Logic
S-191A0xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191A1xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191A2xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191A3xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191A4xxxA	0%	Active "L"	Nch open-drain output	Active "L"

2. 2 Hysteresis width "Available"

*1. Parasitic diode

Figure 4


Product Name	Hysteresis Width (Vuvhys, Vovhys)	MR Pin Input Logic	UV, OV Pin Output Form	UV, OV Pin Output Logic
S-191AAxxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191ABxxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191ACxxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191ADxxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191AExxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191AGxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191AHxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191AJxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191AKxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191ALxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191ANxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"
S-191APxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"
S-191AQxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"
S-191ARxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"
S-191ASxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"

■ AEC-Q100 in Process

Contact our sales representatives for details of AEC-Q100 reliability specification.

■ Product Name Structure

1. Product name

- *1. Refer to the tape drawing.
- *2. Set the overvoltage detection voltage higher than the undervoltage detection voltage.
- *3. For details on hysteresis width and undervoltage detection voltage, refer to Table 1 and "2. Function list of product types". When determining the overvoltage detection voltage, undervoltage detection voltage and hysteresis width, refer to "3. Relationship between overvoltage detection voltage, undervoltage detection voltage and hysteresis width" in "■ Usage Precautions".
- *4. If you request the product which has 0.05 V step, contact our sales representatives.

Table 1 Relationship Between Hysteresis Width, Undervoltage Detection Voltage and Product Name

Hysteresis Width (Vuvhys, Vovhys)	Undervoltage Detection Voltage (VUVDET)	Product Name*1
0%	0.60 V to 0.95 V	S-191A0xxxA
0%	1.00 V to 1.95 V	S-191A1xxxA
0%	2.00 V to 2.95 V	S-191A2xxxA
0%	3.00 V to 3.95 V	S-191A3xxxA
0%	4.00 V to 4.90 V	S-191A4xxxA
3.0%	0.60 V to 0.95 V	S-191AAxxxA
3.0%	1.00 V to 1.95 V	S-191ABxxxA
3.0%	2.00 V to 2.95 V	S-191ACxxxA
3.0%	3.00 V to 3.95 V	S-191ADxxxA
3.0%	4.00 V to 4.90 V	S-191AExxxA
5.0%	0.60 V to 0.95 V	S-191AGxxxA
5.0%	1.00 V to 1.95 V	S-191AHxxxA
5.0%	2.00 V to 2.95 V	S-191AJxxxA
5.0%	3.00 V to 3.95 V	S-191AKxxxA
5.0%	4.00 V to 4.90 V	S-191ALxxxA
10.0%	0.60 V to 0.95 V	S-191ANxxxA
10.0%	1.00 V to 1.95 V	S-191APxxxA
10.0%	2.00 V to 2.95 V	S-191AQxxxA
10.0%	3.00 V to 3.95 V	S-191ARxxxA
10.0%	4.00 V to 4.90 V	S-191ASxxxA

^{*1.} The first digit symbol after S-191A indicates the integer digits of hysteresis width and undervoltage detection voltage. The second digit symbol after S-191A indicates the decimal place of the undervoltage detection voltage.

Example: If the hysteresis width is 0% and the undervoltage detection voltage is 0.6 V, it is described as S-191A06.

If the hysteresis width is 3% and the undervoltage detection voltage is $1.4\ V$, it is described as S-191AB4.

If the hysteresis width is 5% and the undervoltage detection voltage is 4.9 V, it is described as S-191AL9.

If the hysteresis width is 10% and the undervoltage detection voltage is 2.5 V, it is described as S-191AQ5.

Remark If you request the product which has 0.05 V step, contact our sales representatives.

2. Function list of product types

Table 2

Product Name	Hysteresis Width (Vuvhys, Vovhys)	MR Pin Input Logic	RO / UV, OV Pin Output Form	RO / UV, OV Pin Output Logic
S-191A0xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191A1xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191A2xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191A3xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191A4xxxA	0%	Active "L"	Nch open-drain output	Active "L"
S-191AAxxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191ABxxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191ACxxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191ADxxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191AExxxA	3.0%	Active "L"	Nch open-drain output	Active "L"
S-191AGxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191AHxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191AJxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191AKxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191ALxxxA	5.0%	Active "L"	Nch open-drain output	Active "L"
S-191ANxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"
S-191APxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"
S-191AQxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"
S-191ARxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"
S-191ASxxxA	10.0%	Active "L"	Nch open-drain output	Active "L"

3. Packages

Table 3 Package Drawing Codes

Package Name	Dimension	Tape	Reel	Land
SOT-23-6	MP006-A-P-SD	MP006-A-C-SD	MP006-A-R-SD	_
HSNT-8(1616)B	PY008-B-P-SD	PY008-B-C-SD	PY008-B-R-SD	PY008-B-L-SD

■ Pin Configurations

1. SOT-23-6

Top view

Figure 5

Table 4

Pin No.	Symbol	Description
1	SENSE	Detection voltage input pin
2	VDD	Voltage input pin
3	MR	Manual reset pin
4	RO	Voltage detection output pin
5	VSS	GND pin
6	CD*1	Connection pin for release delay time adjustment capacitor

***1.** Connect a capacitor between the CD pin and the VSS pin. The release delay time can be adjusted according to the capacitance.

2. HSNT-8(1616)B

Top view

Bottom view

Figure 6

Table 5

Pin No.	Symbol	Description
1	MR	Manual reset pin
2	VDD	Voltage input pin
3	NC*2	No connection
4	SENSE	Detection voltage input pin
5	CD*3	Connection pin for release delay time adjustment capacitor
6	VSS	GND pin
7	UV	Undervoltage detection output pin
8	OV	Overvoltage detection output pin

- ***1.** Connect the heat sink of backside at shadowed area to the board, and set electric potential GND. However, do not use it as the function of electrode.
- *2. The NC pin is electrically open.

 The NC pin can be connected to the VDD pin or the VSS pin.
- ***3.** Connect a capacitor between the CD pin and the VSS pin. The release delay time can be adjusted according to the capacitance.

■ Absolute Maximum Ratings

Table 6

(Ta = -40°C to +125°C unless otherwise specified)

	Item	Symbol	Absolute Maximum Rating	Unit
Power supply voltage		V_{DD}	$V_{SS} - 0.3$ to $V_{SS} + 7.0$	V
SENSE pin voltage		Vsense	$V_{SS} - 0.3$ to $V_{SS} + 7.0$	V
CD pin input voltage		VcD	$V_{SS} - 0.3$ to $V_{DD} + 0.3 \le V_{SS} + 7.0$	V
MR pin input voltage		V _{MR}	$V_{SS} - 0.3$ to $V_{DD} + 0.3 \le V_{SS} + 7.0$	V
Output voltage	SOT-23-6	V _{RO}	$V_{SS} - 0.3$ to $V_{SS} + 7.0$	V
	LICHT 9/1616\P	Vuv	$V_{SS} - 0.3$ to $V_{SS} + 7.0$	V
	HSNT-8(1616)B	$\begin{array}{cccc} & V_{SENSE} & V_{SS} - 0.3 \text{ to } V_{SS} + 7.0 \\ & V_{CD} & V_{SS} - 0.3 \text{ to } V_{DD} + 0.3 \leq V_{SS} + 7. \\ & V_{MR} & V_{SS} - 0.3 \text{ to } V_{DD} + 0.3 \leq V_{SS} + 7. \\ & V_{RO} & V_{SS} - 0.3 \text{ to } V_{SS} + 7.0 \\ \end{array}$	$V_{SS} - 0.3$ to $V_{SS} + 7.0$	V
	SOT-23-6	I _{RO}	25	mA
Output current	LICHT 9/4646\D	luv	25	mA
	HSNT-8(1616)B	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mA	
Junction temperature		Tj	-40 to +150	°C
Operation ambient temperature		Topr	-40 to +125	°C
Storage temperature		T _{stg}	-40 to +150	°C

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

■ Thermal Resistance Value

Table 7

Item	Symbol	Condi	tion	Min.	Тур.	Max.	Unit
			Board A	_	159	_	°C/W
			Board B	_	124	-	°C/W
		SOT-23-6	Board C	_	ı	-	°C/W
	θја		Board D	_	ı	-	°C/W
lumption to analyse the model no sistem of *1			Board E	_	ı	-	°C/W
Junction-to-ambient thermal resistance*1		HSNT-8(1616)B	Board A	_	214	-	°C/W
			Board B	_	172	-	°C/W
			Board C	_	52	-	°C/W
			Board D	_	55	-	°C/W
			Board E	_	43	-	°C/W

^{*1.} Test environment: compliance with JEDEC STANDARD JESD51-2A

Remark Refer to "■ Power Dissipation" and "Test Board" for details.

■ Electrical Characteristics

1. SOT-23-6

Table 8

(Ta = -40°C to +125°C unless otherwise specified)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Undervoltage detection voltage*1	VUVDET	$V_{DD} = 5.0 \text{ V},$ 0.6 V \le V_{UVDET(S)} \le 4.9 V	V _{UVDET(S)} × 0.985	V _{UVDET(S)}	VUVDET(S) × 1.015	٧	1
Overvoltage detection voltage*2	V _{OVDET}	$V_{DD} = 5.0 \text{ V},$ $0.7 \text{ V} \le V_{OVDET(S)} \le 5.5 \text{ V}$	$V_{\text{OVDET(S)}} \times 0.985$	V _{OVDET(S)}	V _{OVDET(S)} × 1.015	٧	1
		S-191A06xx to S-191A49xx (V _{UVHYS} = 0%)	_	V _{UVDET} × 0.00	-	V	1
Undervoltage hysteresis width*3	Vuvhys	S-191AA6xx to S-191AE9xx (V _{UVHYS} = 3.0%)	$V_{\text{UVDET}} \times 0.02$	V _{UVDET} × 0.03	V _{UVDET} × 0.04	>	1
Ondervoitage hysteresis width	VUVHYS	S-191AG6xx to S-191AL9xx (V _{UVHYS} = 5.0%)	$V_{\text{UVDET}} \times 0.04$	V _{UVDET} × 0.05	V _{UVDET} × 0.06	٧	1
		S-191AN6xx to S-191AS9xx (V _{UVHYS} = 10.0%)	$V_{\text{UVDET}} \times 0.09$	V _{UVDET} × 0.10	V _{UVDET} × 0.11	٧	1
Overvoltage hysteresis width*3		S-191A06xx to S-191A49xx (V _{OVHYS} = 0%)	_	VOVDET × 0.00	_	V	1
	Vovhys	S-191AA6xx to S-191AE9xx (V _{OVHYS} = 3.0%)	$V_{\text{OVDET}} \times 0.02$	V _{OVDET} × 0.03	V _{OVDET} × 0.04	٧	1
		S-191AG6xx to S-191AL9xx (V _{OVHYS} = 5.0%)	$V_{\text{OVDET}} \times 0.04$	V _{OVDET} × 0.05	$V_{\text{OVDET}} \times 0.06$	٧	1
		S-191AN6xx to S-191AS9xx (V _{OVHYS} = 10.0%)	$V_{\text{OVDET}} \times 0.09$	$V_{OVDET} \times 0.10$	V _{OVDET} × 0.11	٧	1
Current consumption	I _{SS1}	$V_{DD} = 5.0 \text{ V},$ $V_{SENSE} = (V_{UVREL(S)} + V_{OVREL(S)}) / 2$	-	1.5	2.6	μΑ	5
Operation voltage	V_{DD}	_	2.5	_	6.0	V	1
Output current	I _{OUT}	RO pin Nch driver, $V_{DD} = 2.5 \text{ V}, V_{DS}^{*4} = 0.5 \text{ V},$ $V_{SENSE} = V_{UVDET(S)} - 0.5 \text{ V}$	2.50	_	-	mA	2
Leakage current	I _{LEAK}	RO pin Nch driver, $V_{DD} = 6.0 \text{ V}, V_{RO} = 6.0 \text{ V},$ $V_{SENSE} = (V_{UVREL(S)} + V_{OVREL(S)}) / 2$	-	-	0.20	μΑ	2
Detection response time*5	treset	_	_	10.0	40.0	μs	3
Release delay time*6	t _{DELAY}	C _D = 3.3 nF	8.5	10.0	11.5	ms	3
SENSE pin resistance	RSENSE	-	3.3	_	42.5	МΩ	5
MR pin input voltage "H"	V_{MRH}	-	2.0	_	_	V	4
MR pin input voltage "L"	V_{MRL}	-	1	_	0.6	V	4
MR pin resistance	R _{MR}	-	0.91	2.20	5.71	МΩ	4
CD pin discharge ON resistance	Rcdd	$V_{DD} = 2.5 \text{ V}, V_{CD} = 0.7 \text{ V}$	0.15	_	0.90	kΩ	_

 $[\]textbf{*1.} \quad V_{\text{UVDET:}} \text{ Actual undervoltage detection voltage value, } V_{\text{UVDET(S):}} \text{ Set undervoltage detection voltage value}$

Hysteresis width "Unavailable": $V_{UVREL} = V_{UVDET}$, $V_{OVREL} = V_{OVDET}$

Hysteresis width "Available": Vuvrel = Vuvdet + Vuvhys, Vovrel = Vovdet - Vovhys

^{*2.} VOVDET: Actual overvoltage detection voltage value, VOVDET(S): Set overvoltage detection voltage value

^{*3.} V_{UVREL}: Actual undervoltage release voltage value, V_{UVREL(S)}: Set undervoltage release voltage value V_{OVREL}: Actual overvoltage release voltage value, V_{OVREL(S)}: Set overvoltage release voltage value V_{UVREL} and V_{OVREL} are as follows.

^{*4.} V_{DS}: Drain-to-source voltage of the output transistor

^{*5.} The time period from when the pulse voltage of $V_{\text{UVDET(S)}} + 0.5 \text{ V} \rightarrow V_{\text{UVDET(S)}} - 0.5 \text{ V}$ or $V_{\text{OVDET(S)}} - 0.5 \text{ V} \rightarrow V_{\text{OVDET(S)}} + 0.5 \text{ V}$ or $V_{\text{OVDET(S)}} - 0.5 \text{ V} \rightarrow V_{\text{OVDET(S)}} + 0.5 \text{ V}$ is applied to the SENSE pin after V_{SENSE} reaches the release voltage once, until V_{UV} or V_{OV} reaches 50% of V_{DD} . It is the time period for V_{UV} or V_{OV} to reach 50% of V_{DD} after applying a pulse voltage of $\left(V_{\text{UVREL(S)}} + V_{\text{OVREL(S)}}\right) / 2 \rightarrow V_{\text{UVREL(S)}} - 0.5 \text{ V}$ or $\left(V_{\text{UVREL(S)}} + V_{\text{OVREL(S)}}\right) / 2 \rightarrow V_{\text{OVDET(S)}} + 0.5 \text{ V}$ to the SENSE pin, in case of $V_{\text{OVDET(S)}} - V_{\text{UVDET(S)}} \leq 0.5 \text{ V}$.

^{*6.} The time period from when the pulse voltage of $V_{UVREL(S)} - 0.5 \text{ V} \rightarrow V_{UVREL(S)} \times 1.03 \text{ V}$ or $V_{OVREL(S)} + 0.5 \text{ V} \rightarrow V_{OVREL(S)} \times 0.97 \text{ V}$ is applied to the SENSE pin to when V_{UV} or V_{OV} reaches 50% of V_{DD} .

2. HSNT-8(1616)B

Table 9

(Ta = -40°C to +125°C unless otherwise specified)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Undervoltage detection voltage*1	VUVDET	V_{DD} = 5.0 V, 0.6 V \leq V _{UVDET(S)} \leq 4.9 V	$V_{\text{UVDET(S)}} \times 0.985$	V _{UVDET(S)}	$\begin{array}{c} V_{\text{UVDET(S)}} \\ \times 1.015 \end{array}$	>	6
Overvoltage detection voltage*2	VOVDET	$V_{DD} = 5.0 \text{ V},$ 0.7 V \le V_{OVDET(S)} \le 5.5 V	V _{OVDET(S)} × 0.985	V _{OVDET(S)}	V _{OVDET(S)} × 1.015	>	6
		S-191A06xx to S-191A49xx (V _{UVHYS} = 0%)	-	V _{UVDET} × 0.00	_	٧	6
Undervoltage hysteresis width*3	V _{UVHYS}	S-191AA6xx to S-191AE9xx (V _{UVHYS} = 3.0%)	$V_{UVDET} \times 0.02$	$V_{\text{UVDET}} \times 0.03$	$V_{\text{UVDET}} \times 0.04$	V	6
Ondervoltage Hysteresis width	VUVHYS	S-191AG6xx to S-191AL9xx (V _{UVHYS} = 5.0%)	$V_{\text{UVDET}} \times 0.04$	V _{UVDET} × 0.05	V _{UVDET} × 0.06	V	6
		S-191AN6xx to S-191AS9xx (V _{UVHYS} = 10.0%)	$V_{\text{UVDET}} \times 0.09$	VUVDET × 0.10	V _{UVDET} × 0.11	V	6
		S-191A06xx to S-191A49xx (V _{OVHYS} = 0%)	_	$V_{\text{OVDET}} \times 0.00$	_	V	6
Overvoltage hysteresis width*3	Voveys	S-191AA6xx to S-191AE9xx (V _{OVHYS} = 3.0%)	$V_{\text{OVDET}} \times 0.02$	V _{OVDET} × 0.03	V _{OVDET} × 0.04	V	6
Overvoltage flysteresis width	VOVHYS	S-191AG6xx to S-191AL9xx (V _{OVHYS} = 5.0%)	$V_{\text{OVDET}} \times 0.04$	V _{OVDET} × 0.05	$V_{\text{OVDET}} \times 0.06$	٧	6
		S-191AN6xx to S-191AS9xx (V _{OVHYS} = 10.0%)	$V_{\text{OVDET}} \times 0.09$	V _{OVDET} × 0.10	V _{OVDET} × 0.11	٧	6
Current consumption	I _{SS1}	$V_{DD} = 5.0 \text{ V},$ $V_{SENSE} = (V_{UVREL(S)} + V_{OVREL(S)}) / 2$	_	1.5	2.6	μΑ	10
Operation voltage	V_{DD}	_	2.5	_	6.0	V	6
Output augreent		UV pin Nch driver, $V_{DD} = 2.5 \text{ V}, V_{DS}^{*4} = 0.5 \text{ V},$ $V_{SENSE} = V_{UVDET(S)} - 0.5 \text{ V}$	2.50	-	-	mA	7
Output current	Іоит	OV pin Nch driver, $V_{DD} = 2.5 \text{ V}, V_{DS}^{*4} = 0.5 \text{ V},$ $V_{SENSE} = V_{OVDET(S)} + 0.5 \text{ V}$	2.50	-	-	mA	7
Leakage current	I _{LEAK}	UV pin Nch driver, V _{DD} = 6.0 V, V _{UV} = 6.0 V, V _{SENSE} = 6.0 V	-	-	0.10	μΑ	7
		OV pin Nch driver, V _{DD} = 6.0 V, V _{OV} = 6.0 V, V _{SENSE} = 0 V	-	-	0.10	μΑ	7
Detection response time*5	t _{RESET}	-	-	10.0	40.0	μs	8
Release delay time*6	tDELAY	C _D = 3.3 nF	8.5	10.0	11.5	ms	8
SENSE pin resistance	RSENSE	-	3.3	_	42.5	МΩ	10
MR pin input voltage "H"	V_{MRH}	-	2.0	-	-	V	9
MR pin input voltage "L"	V _{MRL}	-	_	_	0.6	V	9
MR pin resistance	R _{MR}	_	0.91	2.20	5.71	МΩ	9
CD pin discharge ON resistance	R _{CDD}	$V_{DD} = 2.5 \text{ V}, V_{CD} = 0.7 \text{ V}$	0.15	_	0.90	kΩ	_

^{*1.} VUVDET: Actual undervoltage detection voltage value, VUVDET(S): Set undervoltage detection voltage value

Vovrel: Actual overvoltage release voltage value, Vovrel(s): Set overvoltage release voltage value

V_{UVREL} and V_{OVREL} are as follows.

Hysteresis width "Unavailable": Vuvrel = Vuvdet, Vovrel = Vovdet

Hysteresis width "Available": Vuvrel = Vuvdet + Vuvhys, Vovrel = Vovdet - Vovhys

^{*2.} VOVDET: Actual overvoltage detection voltage value, VOVDET(S): Set overvoltage detection voltage value

^{*3.} V_{UVREL}: Actual undervoltage release voltage value, V_{UVREL(S)}: Set undervoltage release voltage value

^{*4.} V_{DS}: Drain-to-source voltage of the output transistor

^{*5.} The time period from when the pulse voltage of $V_{\text{UVDET(S)}} + 0.5 \rightarrow V_{\text{UVDET(S)}} - 0.5 \text{ V}$ or $V_{\text{OVDET(S)}} - 0.5 \text{ V} \rightarrow V_{\text{OVDET(S)}} + 0.5 \text{ V}$ is applied to the SENSE pin after V_{SENSE} reaches the release voltage once, until V_{UV} or V_{OV} reaches 50% of V_{DD} .

^{*6.} The time period from when the pulse voltage of $V_{UVREL(S)} - 0.5 \text{ V} \rightarrow V_{UVREL(S)} \times 1.03 \text{ V}$ or $V_{OVREL(S)} + 0.5 \text{ V} \rightarrow V_{OVREL(S)} \times 0.97 \text{ V}$ is applied to the SENSE pin to when V_{UV} or V_{OV} reaches 50% of V_{DD} .

■ Test Circuits

1. SOT-23-6

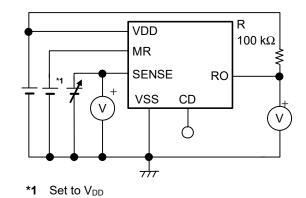


Figure 7 Test Circuit 1

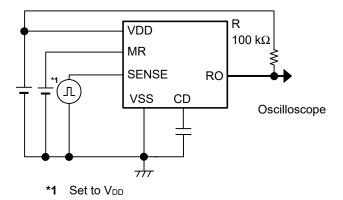


Figure 9 Test Circuit 3

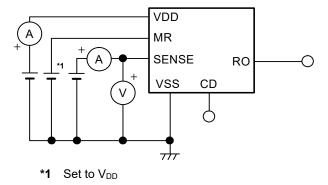


Figure 11 Test Circuit 5

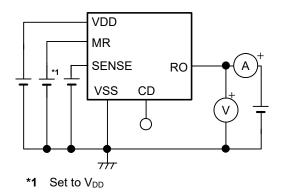


Figure 8 Test Circuit 2

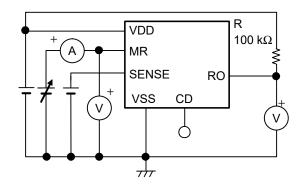


Figure 10 Test Circuit 4

2. HSNT-8(1616)B

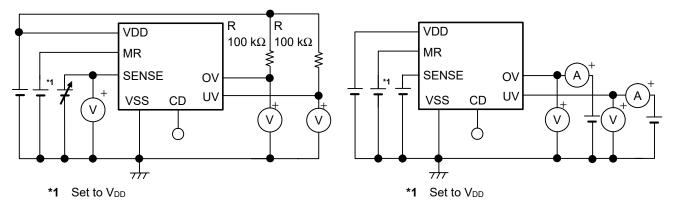


Figure 12 Test Circuit 6

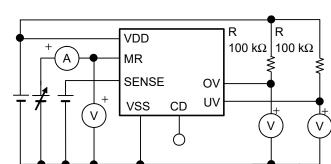


Figure 13 Test Circuit 7

VDD MR SENSE OV VSS CD UV

Oscilloscope

*1 Set to V_{DD}

Figure 14 Test Circuit 8

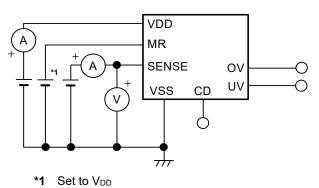
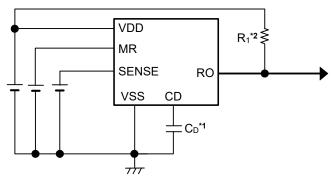
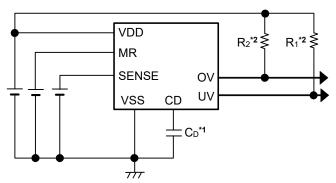



Figure 16 Test Circuit 10

Figure 15 Test Circuit 9

■ Standard Circuit


1. SOT-23-6

- *1. C_D is a release delay time adjustment capacitor. The C_D should be connected directly to the CD pin and the VSS pin.
- *2. R₁ is the external pull-up resistors for the output pin.

Figure 17

2. HSNT-8(1616)B

- *1. C_D is a release delay time adjustment capacitor. The C_D should be connected directly to the CD pin and the VSS pin.
- *2. R₁, R₂ are the external pull-up resistors for the output pin.

Figure 18

Caution The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation including the temperature characteristics with an actual application to set the constants.

■ Condition of Application

Release delay time adjustment capacitor (CD): A ceramic capacitor with capacitance of 0.33 nF or more is recommended.

■ Selection of Release Delay Time Adjustment Capacitor (CD)

In this IC, the release delay time adjustment capacitor (C_D) is necessary between the CD pin and the VSS pin to adjust the release delay time (t_{DELAY}) of the detector. Refer to "3. **Delay circuit**" in "**\blacksquare Operation**" for details.

Caution Perform thorough evaluation including the temperature characteristics with an actual application to select C_D.

■ Explanation of Terms

1. Detection voltage (VUVDET, VOVDET)

The detection voltage is a SENSE pin voltage at which the output voltage in **Figure 23** or **Figure 24** turns to "L". The detection voltage varies slightly among products of the same specification. The variation of detection voltage between the specified minimum and the maximum is called the detection voltage range (Refer to "**Figure 19 Overvoltage Detection Voltage**", "**Figure 21 Undervoltage Detection Voltage**").

Table 10

Detection Operation	Detection Voltage	Output Voltage	Detection Voltage Range
Undervoltage detection	Vuvdet	V_{RO} / V_{UV} = "H" \rightarrow "L"	Vuvdet min. to Vuvdet max.
Overvoltage detection	Vovdet	V_{RO} / V_{OV} = "H" \rightarrow "L"	V _{OVDET} min. to V _{OVDET} max.

Example: In V_{UVDET} = 4.0 V product, the detection voltage is at any point in the range of 3.940 V \leq V_{UVDET} \leq 4.060 V. This means that some V_{UVDET} = 4.0 V product has V_{UVDET} = 3.940 V and some has V_{UVDET} = 4.060 V.

2. Release voltage (V_{UVREL}, V_{OVREL})

The release voltage is a SENSE pin voltage at which the output voltage in **Figure 23** or **Figure 24** turns to "H". The release voltage varies slightly among products of the same specification. The variation of release voltage between the specified minimum and the maximum is called the release voltage range (Refer to "**Figure 20 Overvoltage Release Voltage**").

The release voltage becomes the value differs from the detection voltage within the range shown below.

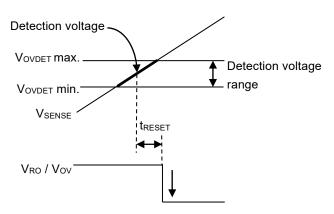

- S-191AA6xx to S-191AE9xx: 2% to 4% (3% typ.)
- S-191AG6xx to S-191AL9xx: 4% to 6% (5% typ.)
- S-191AN6xx to S-191AS9xx: 9% to 11% (10% typ.)

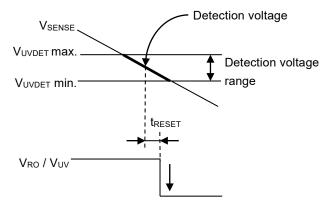
Table 11

Detection Operation	Release Voltage	Output Voltage	Release Voltage Range
Undervoltage detection	V _{UVREL}	V_{RO} / V_{UV} = "L" \rightarrow "H"	V _{UVREL} min. to V _{UVREL} max.
Overvoltage detection	Vovrel	V_{RO} / V_{OV} = "L" \rightarrow "H"	Vovrel min. to Vovrel max.

Example: For S-191AS0xx, V_{UVDET} = 4.0 V product, the release voltage is at any point in the range of 4.29 V \leq V_{UVREL} \leq 4.51 V despite V_{UVREL} = 4.40 V typ.

This means that S-191AS0xx, V_{UVDET} = 4.0 V product has V_{UVREL} = 4.29 V and some has V_{UVREL} = 4.51 V.

Vourel max.


Vourel min.

Release voltage
range

topload to the state of the state

Figure 19 Overvoltage Detection Voltage

Figure 20 Overvoltage Release Voltage

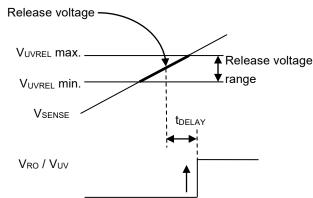


Figure 21 Undervoltage Detection Voltage

Figure 22 Undervoltage Release Voltage

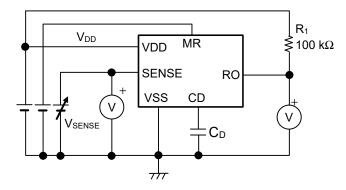


Figure 23 Test Circuit of Detection Voltage and Release Voltage for SOT-23-6

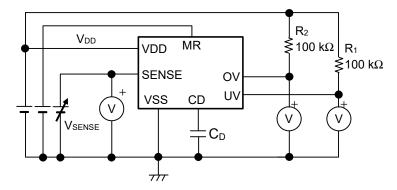


Figure 24 Test Circuit of Detection Voltage and Release Voltage for HSNT-8(1616)B

3. Hysteresis width (Vuvhys, Vovhys)

The hysteresis width is the voltage difference between the detection voltage and the release voltage. Setting the hysteresis width between the detection voltage and the release voltage, prevents malfunction caused by noise on the input voltage.

- Undervoltage hysteresis width (Vuvhys): Vuvrel Vuvdet
- Overvoltage hysteresis width (Vovhys): Vovdet Vovrel

4. Feed-through current

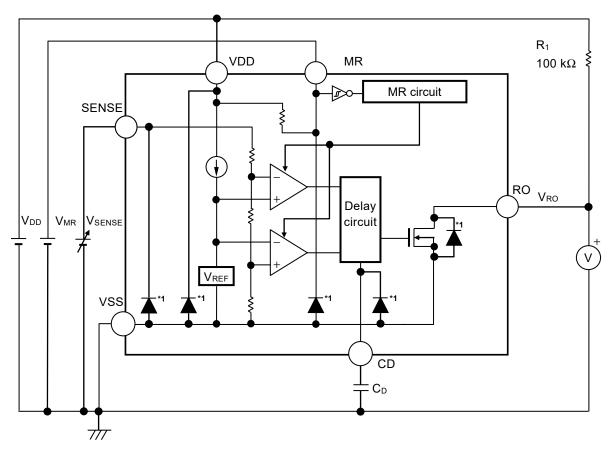
The feed-through current is a current that flows instantaneously to the VDD pin at the time of detection and release of a voltage detector.

■ Operation

1. Basic operation

Figure 25, **Figure 27**, **Figure 29**, and **Figure 31** show that RO pin or UV and OV pins being pulled up by resistors (R_1 , R_2) is an example of basic detector block operation.

1.1 SOT-23-6


1. 1. 1 Hysteresis width "Unavailable"

- (1) Undervoltage detection status to release status (undervoltage release status)

 When the SENSE pin voltage (V_{SENSE}) exceeds the undervoltage release voltage (V_{UVREL} = V_{UVDET}), the RO pin voltage output becomes "H" after release delay time (t_{DELAY}).
- (2) Release status to overvoltage detection status

 V_{SENSE} rises, and when it exceeds the overvoltage detection voltage (V_{OVDET}), the RO pin output becomes "L" after detection response time (t_{RESET}).
- (3) Overvoltage detection status to release status (overvoltage release status)

 V_{SENSE} drops, and when it goes below the overvoltage release voltage (V_{OVREL} = V_{OVDET}), the RO pin output changes to "H" after t_{DELAY}.
- (4) Release status to undervoltage detection status V_{SENSE} drops, and when it goes below the undervoltage detection voltage (V_{UVDET}), the RO pin output becomes "L" after t_{RESET} and changes to undervoltage detection status.

*1. Parasitic diode

Figure 25 Operation

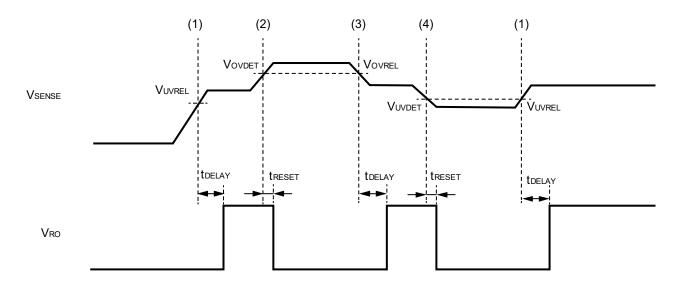
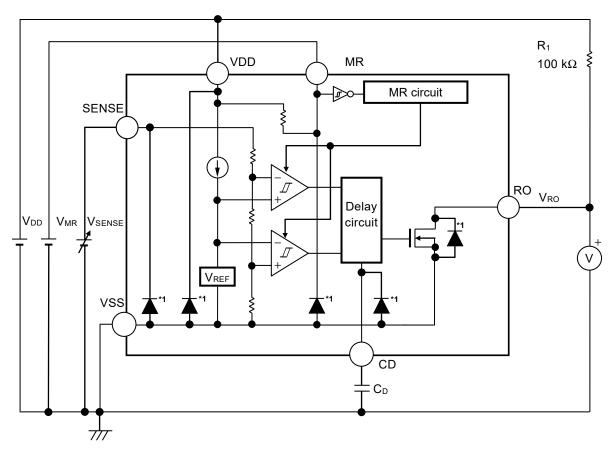


Figure 26 Timing Chart

1. 1. 2 Hysteresis width "Available"

- (1) Undervoltage detection status to release status (undervoltage release status)


 When the SENSE pin voltage (V_{SENSE}) exceeds the undervoltage release voltage (V_{UVREL} = V_{UVDET} + V_{UVHYS}), the RO pin voltage output becomes "H" after release delay time (t_{DELAY}).
- (2) Release status to overvoltage detection status

 V_{SENSE} rises, and when it exceeds the overvoltage detection voltage (V_{OVDET}), the RO pin output becomes "L" after detection response time (t_{RESET}).
- (3) Overvoltage detection status to release status (overvoltage release status)

 Vsense drops, and when it goes below the overvoltage release voltage (Vovrel = Vovdet Vovhys), the RO pin output changes to "H" after tdelay.
- (4) Release status to undervoltage detection status

 V_{SENSE} drops, and when it goes below the undervoltage detection voltage (V_{UVDET}), the RO pin output becomes

 "L" after t_{RESET} and changes to undervoltage detection status.

*1. Parasitic diode

Figure 27 Operation

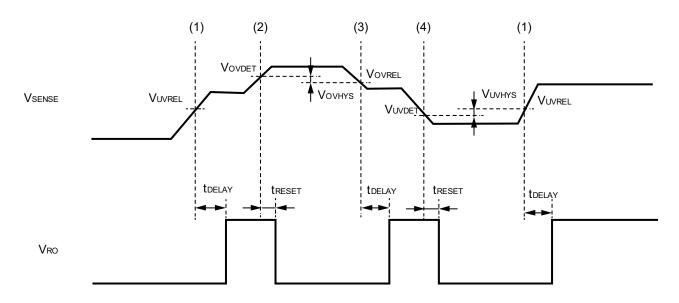


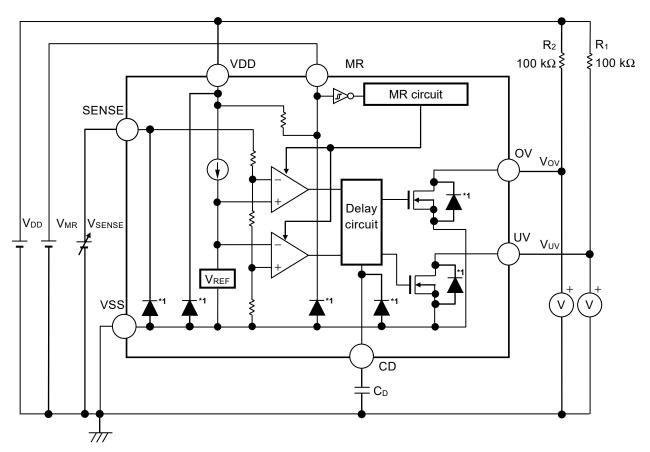
Figure 28 Timing Chart

22

1. 2 HSNT-8(1616)B

1. 2. 1 Hysteresis width "Unavailable"

- (1) Undervoltage detection status to release status (undervoltage release status)


 When the SENSE pin voltage (V_{SENSE}) exceeds the undervoltage release voltage (V_{UVREL} = V_{UVDET}), the UV pin voltage output becomes "H" after release delay time (t_{DELAY}). At this time, the OV pin output stays at "H".
- (2) Release status to overvoltage detection status

 V_{SENSE} rises, and when it exceeds the overvoltage detection voltage (V_{OVDET}), the OV pin output becomes "L" after detection response time (t_{RESET}). At this time, the UV pin stays at "H".
- (3) Overvoltage detection status to release status (overvoltage release status)

 Vsense drops, and when it goes below the overvoltage release voltage (Vovrel = Vovdet), the OV pin output changes to "H" after tdelay. At this time, the UV pin output stays at "H".
- (4) Release status to undervoltage detection status

 V_{SENSE} drops, and when it goes below the undervoltage detection voltage (V_{UVDET}), the UV pin output becomes

 "L" after t_{RESET} and changes to undervoltage detection status. At this time, the OV pin output stays at "H".

*1. Parasitic diode

Figure 29 Operation

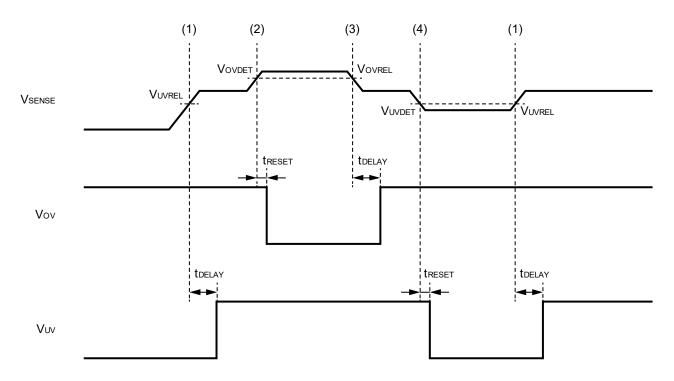
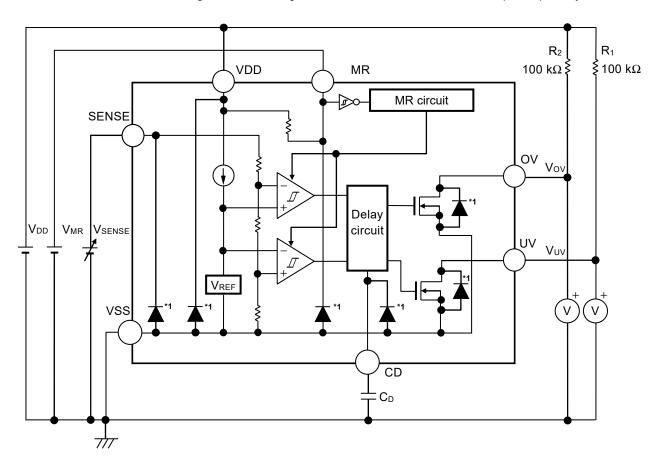


Figure 30 Timing Chart

24

1. 2. 2 Hysteresis width "Available"

- (1) Undervoltage detection status to release status (undervoltage release status)


 When the SENSE pin voltage (V_{SENSE}) exceeds the undervoltage release voltage (V_{UVREL} = V_{UVDET} + V_{UVHYS}), the UV pin voltage output becomes "H" after release delay time (t_{DELAY}). At this time, the OV pin output stays at "H"
- (2) Release status to overvoltage detection status

 V_{SENSE} rises, and when it exceeds the overvoltage detection voltage (V_{OVDET}), the OV pin output becomes "L" after detection response time (t_{RESET}). At this time, the UV pin stays at "H".
- (3) Overvoltage detection status to release status (overvoltage release status)

 V_{SENSE} drops, and when it goes below the overvoltage release voltage (V_{OVREL} = V_{OVDET} V_{OVHYS}), the OV pin output changes to "H" after t_{DELAY}. At this time, the UV pin output stays at "H".
- (4) Release status to undervoltage detection status

 VSENSE drops, and when it goes below the undervoltage detection voltage (VUVDET), the UV pin output becomes

 "L" after treset and changes to undervoltage detection status. At this time, the OV pin output stays at "H".

*1. Parasitic diode

Figure 31 Operation

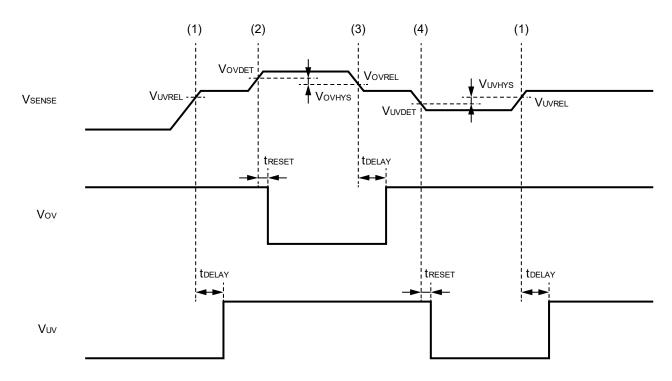


Figure 32 Timing Chart

2. SENSE pin

The SENSE pin is the input pin for the detection voltage. The power supply VDD pin and SENSE pin, for voltage detection, are divided. Therefore, as long as a voltage is supplied to the VDD pin, the reset signal will be held even if the input voltage to the SENSE pin drops below the minimum operation voltage.

2. 1 Error when detection voltage is set externally

The undervoltage detection voltage and the overvoltage detection voltage can be set externally by connecting a node that was resistance-divided by the resistor (R_A) and the resistor (R_B) to the SENSE pin as shown in **Figure 33** and **Figure 34**.

For conventional products without the SENSE pin, external resistor cannot be too large since the resistance-divided node must be connected to the VDD pin. This is because a feed-through current will flow through the VDD pin when it goes from detection to release, and if external resistor is large, problems such as oscillation or larger error in the hysteresis width may occur.

In this IC, R_A and R_B in **Figure 33** and **Figure 34** are easily made larger since the resistance-divided node can be connected to the SENSE pin through which no feed-through current flows. However, be careful of error in the current flowing through the internal resistance (R_{SENSE}) that will occur.

Although R_{SENSE}^{*1} in this IC is large to make the error small, R_A and R_B should be selected such that the error is within the allowable limits.

*1. 3.3 M Ω min.

2. 2 Selection of RA and RB

In **Figure 33** and **Figure 34**, the relation between the external setting undervoltage detection voltage (V_{DUX}) or the overvoltage detection voltage (V_{DOX}) and the actual detection voltage (V_{UVDET}, V_{OVDET}) is ideally calculated by the equation below.

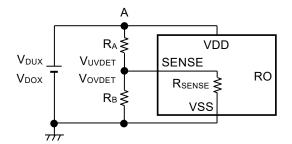
$$V_{DUX} = V_{UVDET} \times \left(1 + \frac{R_A}{R_B}\right) \qquad (1)$$

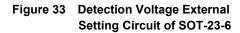
$$V_{DOX} = V_{OVDET} \times \left(1 + \frac{R_A}{R_B}\right) \qquad (1)$$

However, in reality there is an error in the current flowing through R_{SENSE}.

When considering this error, the relation between V_{DUX}, V_{DOX}, V_{UVDET} and V_{OVDET} is calculated as follows.

By using equations (1) and (2), the error is calculated as $V_{UVDET} \times \frac{R_A}{R_{SENSE}}$, $V_{OVDET} \times \frac{R_A}{R_{SENSE}}$.


The error rate is calculated as follows by dividing the error by the right-hand side of equation (1).


$$\frac{R_{\text{A}} \times R_{\text{B}}}{R_{\text{SENSE}} \times (R_{\text{A}} + R_{\text{B}})} \times 100 \ [\%] = \frac{R_{\text{A}} \parallel R_{\text{B}}}{R_{\text{SENSE}}} \times 100 \ [\%] \ \cdots (3)$$

As seen in equation (3), the smaller the resistance values of R_A and R_B compared to R_{SENSE} , the smaller the error rate becomes.

Also, the relation between the external setting undervoltage hysteresis width (V_{HUX}) or the overvoltage hysteresis width (V_{HUX}) and the hysteresis width (V_{UVHYS}, V_{OVHYS}) is calculated by equation below. Error due to R_{SENSE} also occurs to the relation in a similar way to the detection voltage.

$$V_{HUX} = V_{UVHYS} \times \left(1 + \frac{R_A}{R_B}\right)$$
 (4)
$$V_{HOX} = V_{OVHYS} \times \left(1 + \frac{R_A}{R_B}\right)$$
 (4)

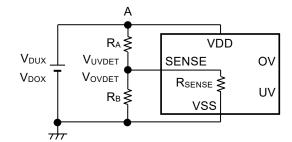


Figure 34 Detection Voltage External Setting Circuit of HSNT-8(1616)B

Caution If R_A and R_B are large, the SENSE pin input impedance becomes higher and may cause a malfunction due to noise. In this case, connect a capacitor between the SENSE pin and the VSS pin.

28 ABLIC Inc.

3. Delay circuit

The delay circuit comes with a function for adjusting the release delay time (t_{DELAY}) from when the SENSE pin voltage (V_{SENSE}) enters the state in **Table 12** and until the output pin inverts.

Table 12

Release operation	Status	Output Pin
Undervoltage release	Undervoltage release voltage (Vuvrel = Vuvdet + Vuvhys) or more	RO pin / UV pin
Overvoltage release	Overvoltage release voltage (Vovrel = Vovdet - Vovhys) or lower	RO pin / OV pin

 t_{DELAY} is determined by the delay coefficient, the release delay time adjustment capacitor (C_D) and the release delay time when the CD pin is open (t_{DELAYO}). They are calculated by the equations below.

 t_{DELAY} [ms] = Delay coefficient \times C_D [nF] + t_{DELAY0} [ms]

Table 13

Operation	Delay Coefficient		
Temperature	Min.	Тур.	Max.
Ta = +125°C	2.64	2.90	3.24
Ta = +25°C	2.67	3.00	3.18
Ta = –40°C	2.72	3.00	3.34

Table 14

Operation	Release Delay Time when CD Pin is Open (tdelayo)		
Temperature	Min.	Тур.	Max.
Ta = +125°C	0.05	0.09	0.24
Ta = +25°C	0.05	0.10	0.22
Ta = –40°C	0.06	0.11	0.27

The release delay time ($t_{DELAYMR}$) during operation of the manual reset function is determined by the delay coefficient, the release delay time adjustment capacitor (C_D), and the release delay time ($t_{DELAYMR0}$) when the CD pin is open during operation of the manual reset function. They are calculated by the equation below.

 $t_{DELAYMR}$ [ms] = Delay coefficient \times C_D [nF] + $t_{DELAYMR0}$ [ms]

Table 15

	Release Delay Time (t _{DELAYMR0}) When the CD Pin is Open During Operation of the		
Operation			
Temperature	Manual Reset Function		
	Min.	Тур.	Max.
Ta = +125°C	0.04	0.19	0.41
Ta = +25°C	0.05	0.26	0.62
Ta = –40°C	0.06	0.35	0.70

- Caution 1. Mounted board layout should be made in such a way that no current flows into or flows from the CD pin since the impedance of the CD pin is high, otherwise correct delay time cannot be provided.
 - 2. There is no limit for the capacitance of C_D as long as the leakage current of the capacitor can be ignored against the built-in constant current value (approximately 160 nA). The leakage current may cause error in delay time. When the leakage current is larger than the built-in constant current, no detect or release takes place.
 - 3. The above equations will not guarantee successful operation. Determine the capacitance of C_D through thorough evaluation including temperature characteristics in the actual usage conditions.

4. Manual reset function

This IC has a manual reset function that can forcibly switch to the detection status.

This IC can activate the manual reset function by applying "L" to the MR pin from the outside.

The manual reset function changes the input voltage of the comparator when an external input signal is received from the MR pin. The manual reset function changes the comparator input voltage of the internal circuit, and the detector is forcibly put into the detection status.

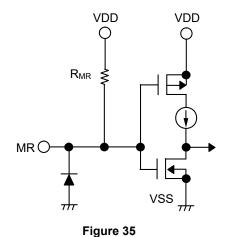
Use of the manual reset function when SENSE pin voltage is held within the release voltage range makes it possible to monitor output pin logic signal to confirm that the comparator circuit, delay circuit and output transistor are operating normally.

4. 1 MR pin

The MR pin input voltage (V_{MR}) forces the output pin voltage to "L".

If the manual reset function is disabled, set the MR pin input voltage (V_{MR}) to "H" or to open.

When the MR pin is open (floating status), the MR pin resistor (R_{MR}) causes the MR pin to be internally pulled up to the VDD pin raising it to V_{DD} level. Also, take care when 0.6 V to V_{DD} min. – 0.3 V voltage is applied to the MR pin as this increases current consumption.


The structure of the MR pin is shown in Figure 35.

Note that when the MR pin is set to "L" level, current relative to MR pin resistance ($R_{MR} = 2.2 \text{ M}\Omega$ typ.) in **Table 8** and **Table 9** in "**Electrical Characteristics**" and VDD pin voltage (V_{DD}) will flow to the MR pin.

Table 16

MR Pin	Internal Circuit	Output Pin Logic	Current Consumption
"H" or open: OFF	Normal operation	Depends on specific status*1	Iss ₁
"L": ON	Forced detection	"L"	Iss1 + V _{DD} / R _{MR}

*1. For details, refer to "4. 2 Manual reset operation".

30 ABLIC Inc.

4. 2 Manual reset operation

Figure 36 shows a timing chart for the manual reset function. SOT-23-6 generates output via the RO pin, while the HSNT-8(1616)B generates output via the OV and UV pins.

When the SENSE pin voltage (V_{SENSE}) is $V_{UVREL} \le V_{SENSE} \le V_{OVREL}$, operation of the manual reset function is shown below.

- (1) When a voltage lower than MR pin input voltage "L" (V_{MRL}) is applied to the MR pin, the output from the RO pin / OV pin, UV pin become "L" and the detector switches from release status to detection status after the detection response time ($t_{RESETMR}$) = 50.0 μ s max. during operation of the manual reset function has elapsed. Apply a voltage of V_{MRL} or less for at least 50.0 μ s.
- (2) When a voltage higher than MR pin input voltage "H" (V_{MRH}) is applied to the MR pin, the output from the RO pin / OV pin, UV pin become "H" and the detector switches from detection status to release status after the release delay time (t_{DELAYMR}) during operation of the manual reset function has elapsed. Be sure to maintain V_{MRH} during t_{DELAYMR}. Refer to "3. Delay circuit" in "■ Operation" for details on t_{DELAYMR}.

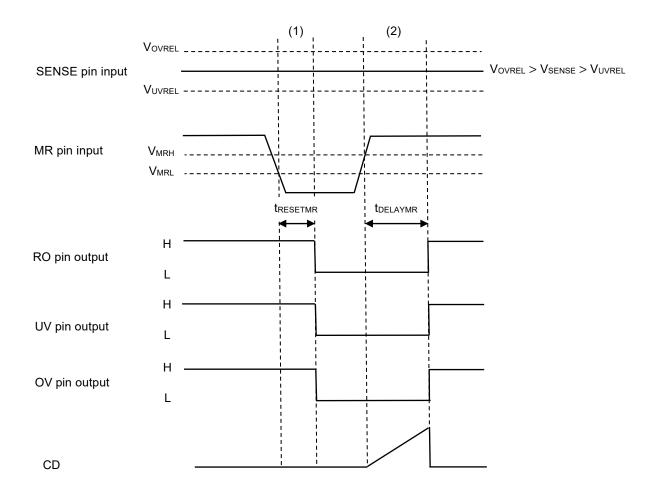


Figure 36

4. 3 When connecting a resistor (RA) between the supply voltage (VDD) and the VDD / SENSE pins

When the VDD and SENSE pins of the IC are shorted and the MR pin input voltage (V_{MR}) is at an intermediate potential ($V_{MRL} < V_{MR} < V_{MRH}$), the current consumption increases by 35.7 μ A max. This current flows through R_A and causes a voltage drop.

When this voltage drop causes the VDD pin voltage (V_{IN}) to fall below the undervoltage detection voltage (V_{UVDET}) , the detector switches to the detection status, and may not be able to switch to the release status unless the supply voltage (V_{DD}) is increased.

When $V_{IN} > V_{MR}$, current also flows through the MR pin input resistor (R_{MR}). For example, when V_{IN} = 6 V, V_{MR} = 1 V, and R_{MR} = 0.91 M Ω min., a current of 5.5 μ A flows from the VDD pin to the MR pin. Therefore, set R_A to satisfy the following equation.

 $R_A \le (V_{DD} - (V_{UVDET})) / (35.7 \mu A + MR pin current)$

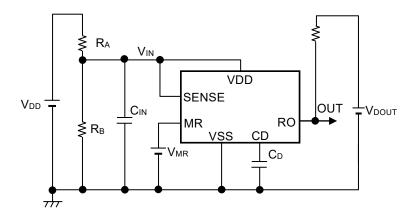


Figure 37 For SOT-23-6

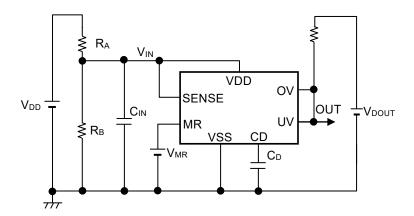
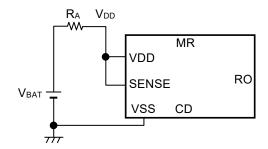


Figure 38 For HSNT-8(1616)B

32 ABLIC Inc.


■ Usage Precautions

1. Feed-through current at the time of detection and release

In this IC, a feed-through current flows instantaneously at the time of detection and release. Therefore, if the input impedance is increased, oscillation may occur due to the voltage drop caused by the feed-through current.

When this IC is used in the configuration shown in **Figure 39** and **Figure 40**, the input impedance is recommended to be 1 $k\Omega$ or less.

Perform a sufficient evaluation including the temperature characteristics under the actual operating conditions.

VDD OV
SENSE UV
VSS CD

 V_{DD}

Figure 39 For SOT-23-6

Figure 40 For HSNT-8(1616)B

2. Power on sequence

Turn on the power in one of the following two procedures.

- (1) Order of VDD pin and SENSE pin (Refer to Figure 41)
- (2) VDD pin and SENSE pin at the same time

When $V_{OVDET} \ge V_{SENSE} \ge V_{UVREL}$ applies, both the overvoltage output voltage (V_{OV}) and the undervoltage output voltage (V_{UV}) become "H", and the detector enters release status.

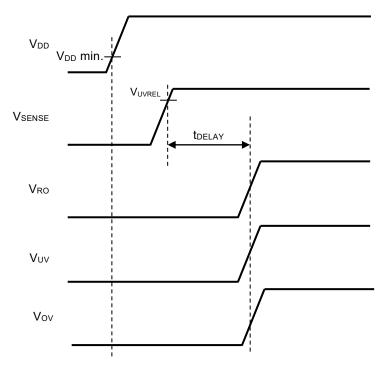


Figure 41

Caution When the SENSE pin is turned on before the VDD pin, a release may mistakenly occur even if VSENSE is less than VUVREL.

3. Relationship between overvoltage detection voltage, undervoltage detection voltage and hysteresis width

The nominal voltage range (V_{NOMINAL}) monitored by customers is defined as shown in Figure 42.

To ensure an appropriate $V_{NOMINAL}$ value, set the overvoltage detection voltage and undervoltage detection voltage considering the detection voltage variation, hysteresis width, and released voltage variation.

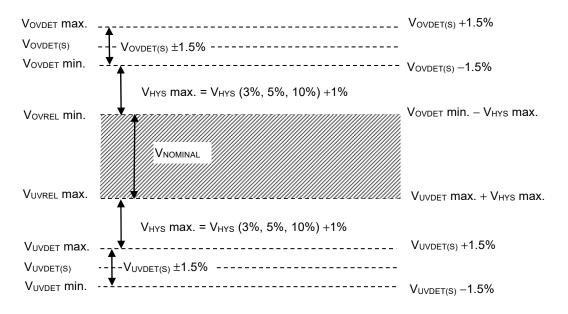
The relationship among $V_{NOMINAL}$, maximum value of undervoltage release voltage (V_{UVREL} max.) and the minimum value of the overvoltage release voltage (V_{OVREL} min.) must satisfy equation (1).

Figure 42 V_{NOMINAL} > 0

The equations below show the relationship among V_{UVREL} max., V_{OVREL} min., the set undervoltage detection voltage $(V_{UVDET(S)})$, the set overvoltage detection voltage $(V_{OVDET(S)})$, the undervoltage hysteresis width (V_{UVHYS}) , and the overvoltage hysteresis width (V_{OVHYS}) .

$$V_{\text{UVREL }} \text{ max.} = V_{\text{UVDET }} \text{ max.} \times (1 + V_{\text{UVHYS }} \text{ max.}) = V_{\text{UVDET(S)}} \times 1.015 \times (1 + V_{\text{UVHYS}} + 0.01) \cdots (2)$$

$$V_{\text{OVREL }} \text{ min.} = V_{\text{OVDET }} \text{ min.} \times (1 - V_{\text{OVHYS }} \text{ max.}) = V_{\text{OVDET(S)}} \times 0.985 \times (1 - V_{\text{OVHYS}} - 0.01) \cdots (3)$$

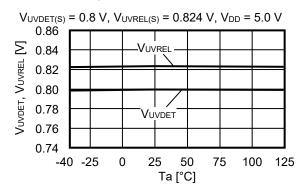

Based on equations (2) and (3), the following equation must be satisfied regarding V_{NOMINAL}, V_{OVDET(S)} and V_{UVDET(S)}.

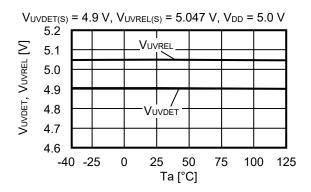
$$V_{NOMINAL} = V_{OVDET(S)} \times 0.985 \times (1 - V_{OVHYS} - 0.01) - V_{UVDET(S)} \times 1.015 \times (1 + V_{UVHYS} + 0.01) > 0 \cdot \cdot \cdot \cdot \cdot (4)$$

For example, calculating if it is possible to set $V_{UVDET(S)} = 3.0 \text{ V}$, $V_{OVDET(S)} = 3.6 \text{ V}$, and $V_{OVHYS} = V_{UVHYS} = 5\%$ typ. (accuracy $\pm 1\%$), the following equation is generated.

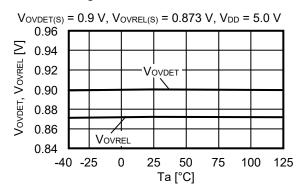
$$V_{NOMINAL} = 3.6 \text{ V} \times 0.985 \times (1 - 0.06) - 3.0 \text{ V} \times 1.015 \times (1 + 0.06) = 0.106 \text{ V}$$

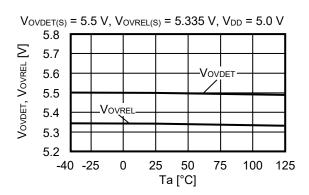
Since V_{NOMINAL} is greater than 0, it can be determined that it is possible to set.

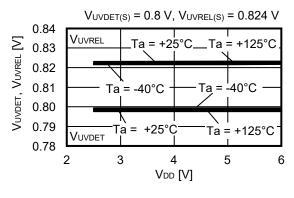

■ Precautions

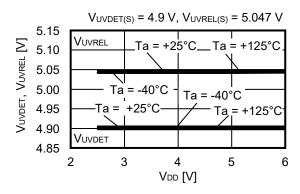

- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- Because the SENSE pin has a high impedance, malfunctions may occur due to noise.
 Be careful of wiring adjoining SENSE pin wiring in actual applications.
- When using the manual reset function, be sure to hold MR pin input voltage "L" (V_{MRL}) for 50.0 μs or longer. Be careful
 if the V_{MRL} is held for less than 50.0 μs, because the internal logic may not be established and a malfunction could
 occur.
- When designing for mass production using an application circuit described herein, the product deviation and temperature characteristics should be taken into consideration. ABLIC Inc. shall not bear any responsibility for patent infringements related to products using the circuits described herein.
- ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.

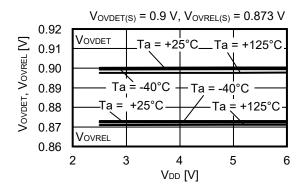
■ Characteristics (Typical Data)

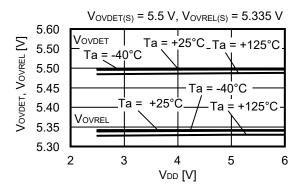

1. Detection voltage (Vuvdet, Vovdet), Release voltage (Vuvrel, Vovrel) vs. Temperature (Ta)


1. 1 Undervoltage detection

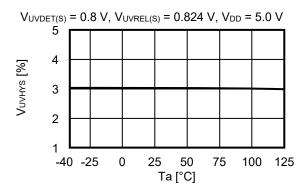

1. 2 Overvoltage detection

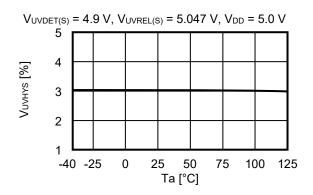



2. Detection voltage (Vuvdet, Vovdet), Release voltage (Vuvrel, Vovrel) vs. Power supply voltage (Vdd)

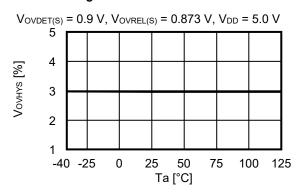

2. 1 Undervoltage detection

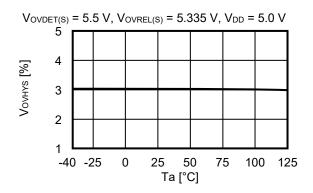
2. 2 Overvoltage detection

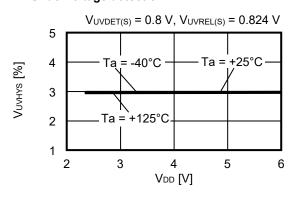


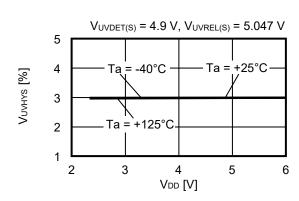


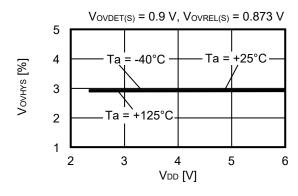
36 ABLIC Inc.


3. Hysteresis width (Vuvhys, Vovhys) vs. Temperature (Ta)

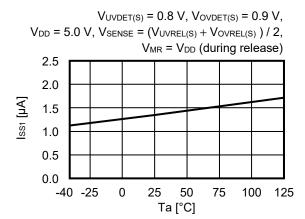

3. 1 Undervoltage detection

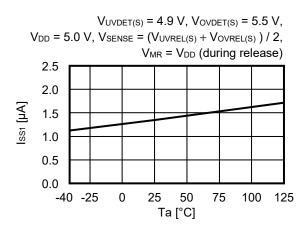

3. 2 Overvoltage detection

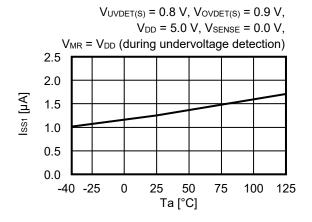


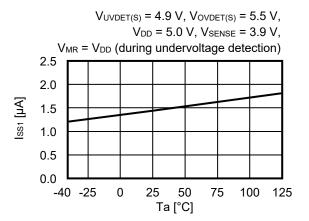

4. Hysteresis width (Vuvhys, Vovhys) vs. Power supply voltage (VDD)

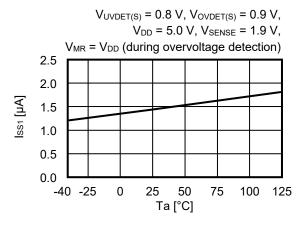

4. 1 Undervoltage detection

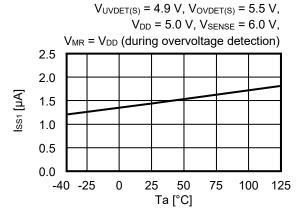


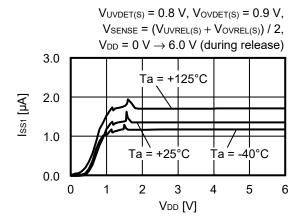

4. 2 Overvoltage detection

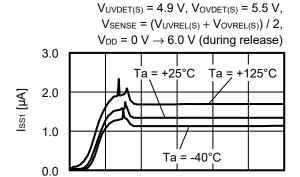


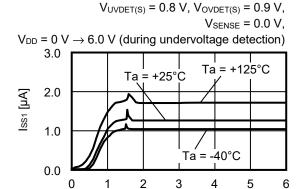



5. Current consumption (I_{SS1}) vs. Temperature (Ta)

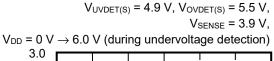








38 ABLIC Inc.

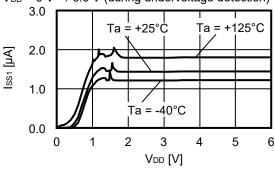

6. Current consumption (Iss1) vs. Power supply voltage (VDD)

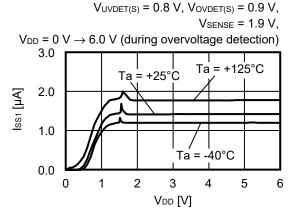
VDD [V]

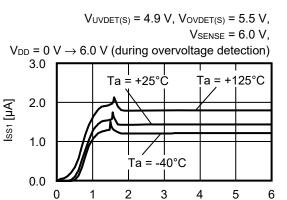
2

3

VDD [V]

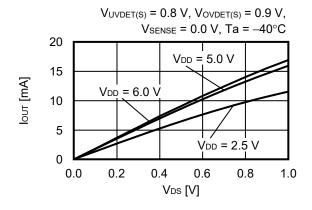

4

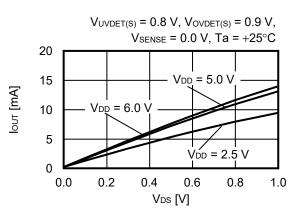

5

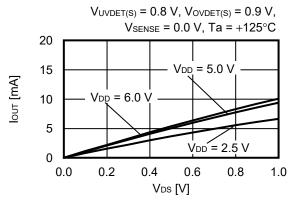

6

1

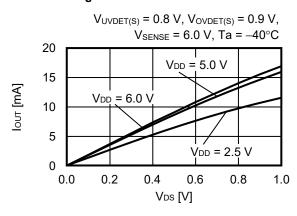
0

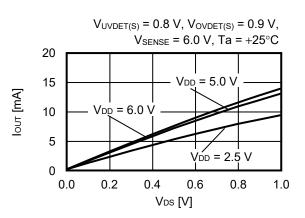


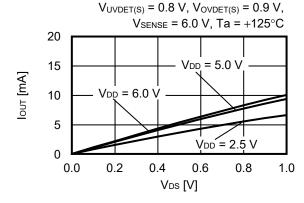



VDD [V]

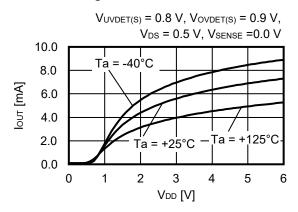
7. Nch transistor output current (IOUT) vs. VDS


7. 1 Undervoltage detection

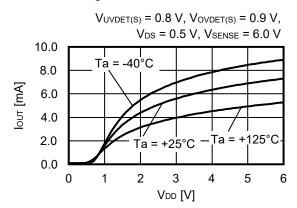




7. 2 Overvoltage detection

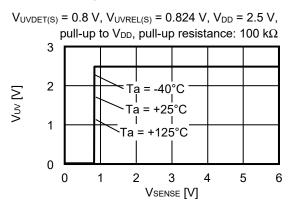


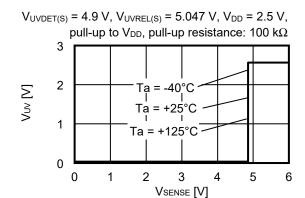
Remark V_{DS}: Drain-to-source voltage of the output transistor


40 ABLIC Inc.

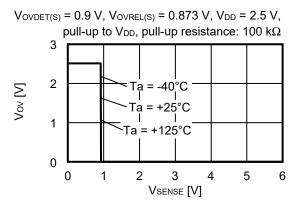
8. Nch transistor output current (IOUT) vs. Power supply voltage (VDD)

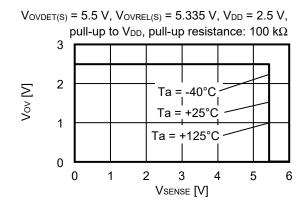
8. 1 Undervoltage detection

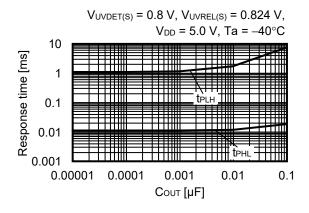

8. 2 Overvoltage detection

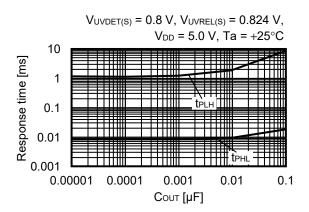


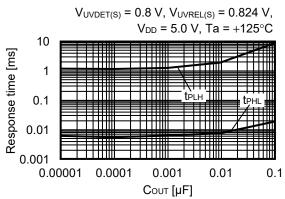
Remark V_{DS}: Drain-to-source voltage of the output transistor


9. Output voltage (Vuv, Vov) vs. SENSE pin voltage (Vsense)

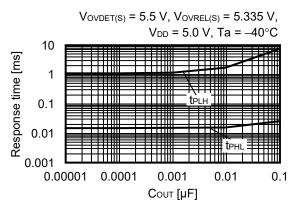

9. 1 Undervoltage detection

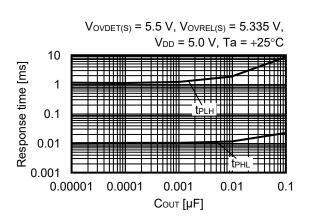

9. 2 Overvoltage detection

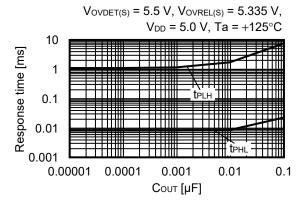


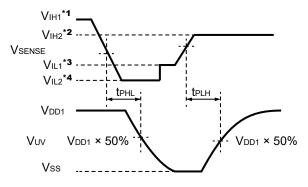


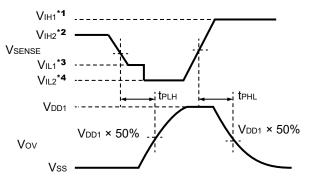
10. Dynamic response vs. Output pin capacitance (C_{OUT}) (CD pin = 0.33 nF)


10. 1 Undervoltage detection






10. 2 Overvoltage detection


42 ABLIC Inc.

- *2. $V_{IH2} = V_{UVREL(S)} \times 1.03 \text{ V}$
- *3. $V_{IL1} = V_{UVREL(S)} 0.5 V$
- ***4.** $V_{IL2} = V_{UVDET(S)} 0.5 V$

Figure 44 Test Condition of Response Time (Undervoltage Detection)

- ***1.** $V_{IH1} = V_{OVDET(S)} + 0.5 V$
- *2. $V_{IH2} = V_{OVREL(S)} + 0.5 V$
- *3. $V_{IL1} = V_{OVDET(S)} \times 0.97 \text{ V}$
- ***4.** $V_{IL2} = V_{OVREL(S)} 0.5 V$

Figure 45 Test Condition of Response Time (Overvoltage Detection)

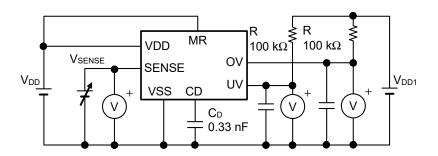
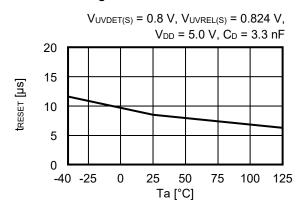
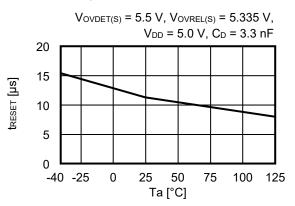


Figure 46 Test Circuit of Response Time

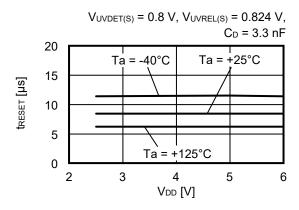

- Caution 1. The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation including the temperature characteristics with an actual application to set the constants.
 - 2. When the CD pin is open, a double pulse may appear at release.

 To avoid the double pulse, attach 0.33 nF or more capacitor to the CD pin.


■ Reference Data

1. Detection response time (treset) vs. Temperature (Ta)

1.1 Undervoltage detection



1. 2 Overvoltage detection

2. Detection response time (treset) vs. Power supply voltage (VDD)

2. 1 Undervoltage detection

2. 2 Overvoltage detection

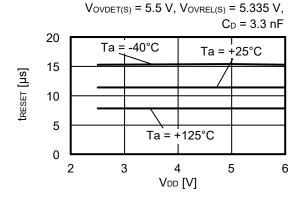
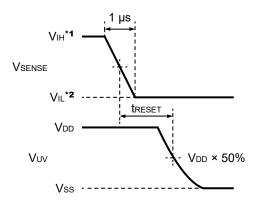
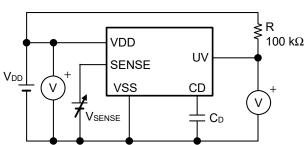
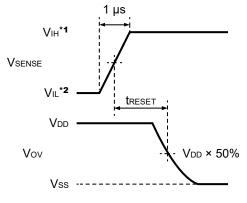




Figure 48



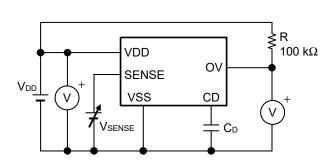

- ***1.** $V_{IH} = V_{UVDET(S)} + 0.5 V$
- *2. $V_{IL} = V_{UVDET(S)} 0.5 V$

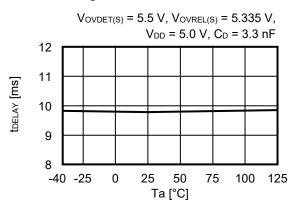
Figure 47 **Test Condition of Detection Response Time** (Undervoltage Detection)

Test Circuit of Detection Response Time

(Undervoltage Detection)

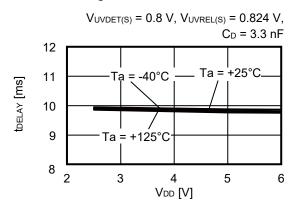
- *1. $V_{IH} = V_{OVDET(S)} + 0.5 V$
- *2. $V_{IL} = V_{OVDET(S)} 0.5 V$

Figure 49 **Test Condition of Detection Response Time** Figure 50 **Test Circuit of Detection Response Time** (Overvoltage Detection) (Overvoltage Detection)

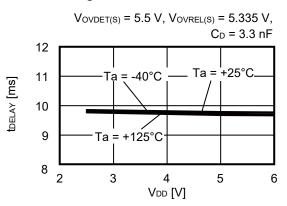

Caution The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation including the temperature characteristics with an actual application to set the constants.

3. Release delay time (t_{DELAY}) vs. Temperature (Ta)

3. 1 Undervoltage detection

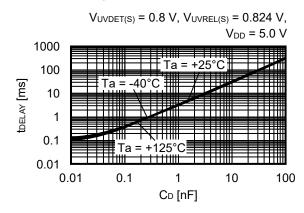

$V_{\text{UVDET(S)}} = 0.8 \text{ V, } V_{\text{UVREL(S)}} = 0.824 \text{ V, } V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $12 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $11 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$ $10 \\ \downarrow V_{\text{DD}} = 5.0 \text{ V, } C_{\text{D}} = 3.3 \text{ nF}$

3. 2 Overvoltage detection

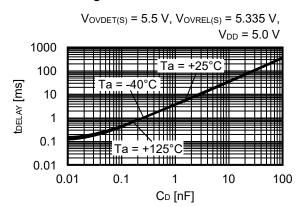


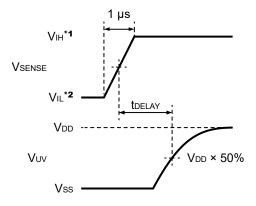
4. Release delay time (t_{DELAY}) vs. Power supply voltage (V_{DD})

4. 1 Undervoltage detection



4. 2 Overvoltage detection




5. Release delay time (t_{DELAY}) vs. CD pin capacitance (C_D) (Without output pin capacitance)

5. 1 Undervoltage detection

5. 2 Overvoltage detection

^{*2.} $V_{IL} = V_{UVREL(S)} - 0.5 V$

Figure 51 Test Condition of Release Delay Time (Undervoltage Detection)

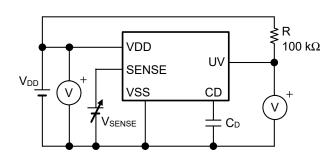
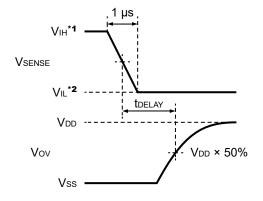



Figure 52 Test Circuit of Release Delay Time (Undervoltage Detection)

- ***1.** $V_{IH} = V_{OVREL(S)} + 0.5 V$
- *2. $V_{IL} = V_{OVREL(S)} \times 0.97 \text{ V}$

Figure 53 Test Condition of Release Delay Time (Overvoltage Detection)

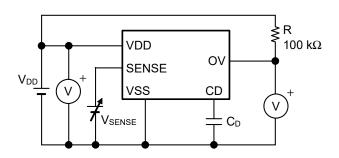
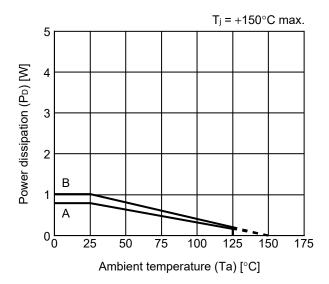
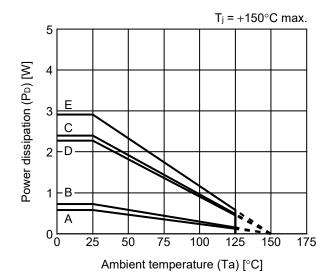



Figure 54 Test Circuit of Release Delay Time (Overvoltage Detection)

Caution The above connection diagram and constants will not guarantee successful operation. Perform thorough evaluation including the temperature characteristics with an actual application to set the constants.


■ Power Dissipation

SOT-23-6

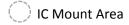
Board	Power Dissipation (P _D)
Α	0.79 W
В	1.01 W
С	_
D	_
Е	_

HSNT-8(1616)B

 Board
 Power Dissipation (PD)

 A
 0.58 W

 B
 0.73 W


 C
 2.40 W

 D
 2.27 W

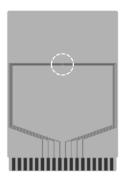
 E
 2.91 W

SOT-23-3/3S/5/6 Test Board

(1) Board A

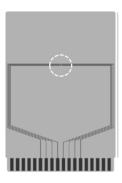
Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil layer		2	
	1	Land pattern and wiring for testing: t0.070	
Coppor foil lover [mm]	2	-	
Copper foil layer [mm]	3	-	
	4	74.2 x 74.2 x t0.070	
Thermal via		-	

(2) Board B

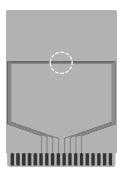

Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil layer		4	
	1	Land pattern and wiring for testing: t0.070	
Copper foil layer [mm]	2	74.2 x 74.2 x t0.035	
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035	
	4	74.2 x 74.2 x t0.070	
Thermal via		-	

No. SOT23x-A-Board-SD-2.0

HSNT-8(1616)B Test Board


O IC Mount Are

(1) Board A

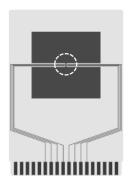

Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil layer		2	
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070	
	2	-	
	3	-	
	4	74.2 x 74.2 x t0.070	
Thermal via		-	

(2) Board B

Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil layer		4	
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070	
	2	74.2 x 74.2 x t0.035	
	3	74.2 x 74.2 x t0.035	
	4	74.2 x 74.2 x t0.070	
Thermal via		-	

(3) Board C

Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil layer		4	
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070	
	2	74.2 x 74.2 x t0.035	
	3	74.2 x 74.2 x t0.035	
	4	74.2 x 74.2 x t0.070	
Thermal via		Number: 4 Diameter: 0.3 mm	

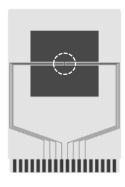

enlarged view

No. HSNT8-C-Board-SD-1.0

HSNT-8(1616)B Test Board

O IC Mount Are

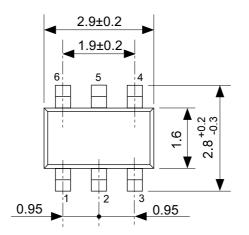
(4) Board D

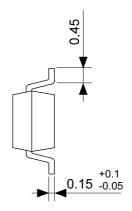


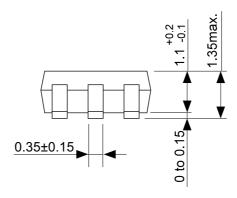
Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil layer		4	
	1	Pattern for heat radiation: 2000mm ² t0.070	
Connor foil layer [mm]	2	74.2 x 74.2 x t0.035	
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035	
	4	74.2 x 74.2 x t0.070	
Thermal via		-	

enlarged view

(5) Board E

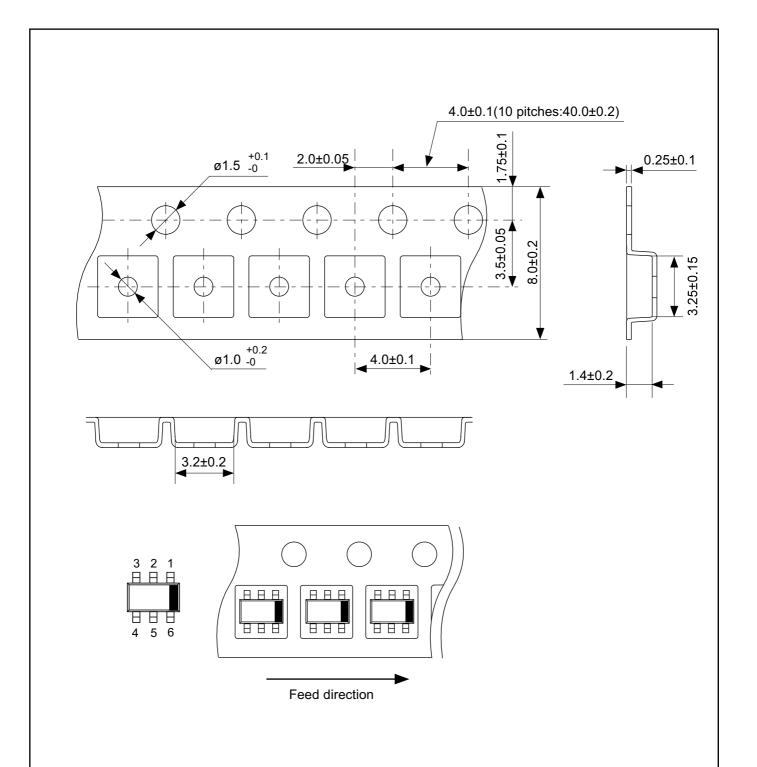


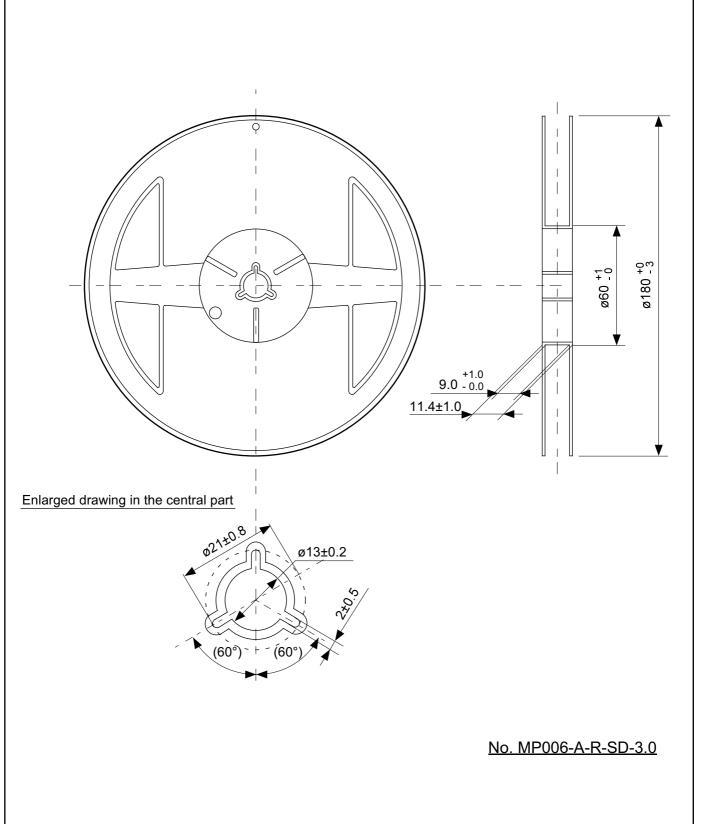

Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil la	ayer	4	
Copper foil layer [mm]	1	Pattern for heat radiation: 2000mm ² t0.070	
	2	74.2 x 74.2 x t0.035	
	3	74.2 x 74.2 x t0.035	
	4	74.2 x 74.2 x t0.070	
Thermal via		Number: 4 Diameter: 0.3 mm	



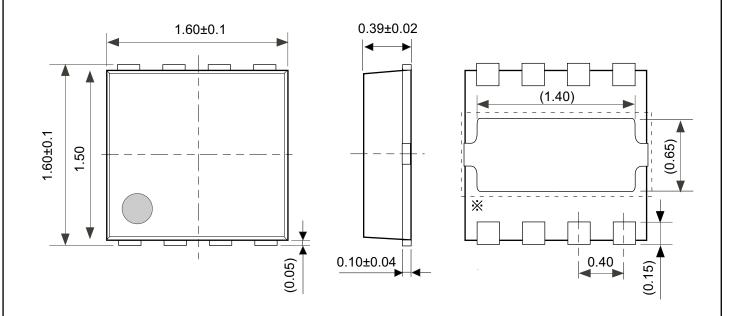
enlarged view

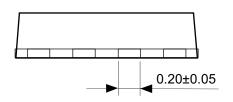
No. HSNT8-C-Board-SD-1.0




No. MP006-A-P-SD-2.1

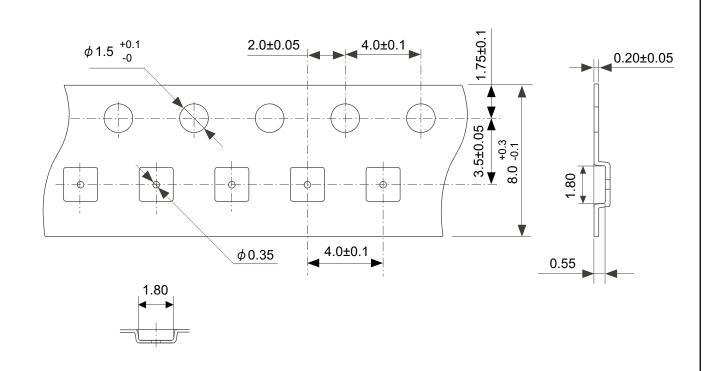
TITLE	SOT236-A-PKG Dimensions	
No.	MP006-A-P-SD-2.1	
ANGLE	\$	
UNIT	mm	
ABLIC Inc.		

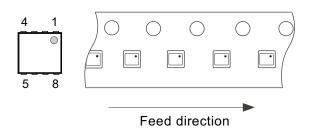



No. MP006-A-C-SD-3.1

TITLE	SOT236-A-Carrier Tape	
No.	MP006-A-C-SD-3.1	
ANGLE		
UNIT	mm	
ABLIC Inc.		

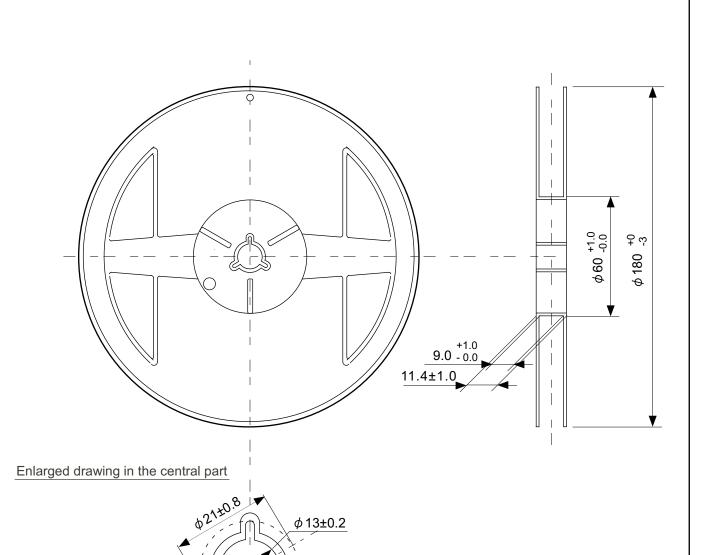
TITLE	SO	Г236-А-F	Reel
No.	MPC)06-A-R-SI	D-3.0
ANGLE		QTY	3,000
UNIT	mm		
ABLIC Inc.			





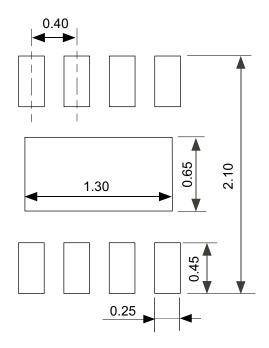
** The heat sink of back side has different electric potential depending on the product. Confirm specifications of each product. Do not use it as the function of electrode.

No. PY008-B-P-SD-1.0


TITLE	HSNT-8-C-PKG Dimensions	
No.	PY008-B-P-SD-1.0	
ANGLE	\$	
UNIT	mm	
ABLIC Inc.		

No. PY008-B-C-SD-1.0

TITLE	HSNT-8-C-Carrier Tape		
No.	PY008-B-C-SD-1.0		
ANGLE			
UNIT	mm		
ABLIC Inc.			



(60°) - + - (60°)

No. PY008-B-R-SD-1.0

TITLE	HSNT-8-C-Reel			
No.	PY008-B-R-SD-1.0			
ANGLE		QTY.	5,000	
UNIT	mm			
ABLIC Inc.				

Land Pattern

Cauion It is recommended to solder the heat sink to a board in order to ensure the heat radiation.

注意 放熱性を確保する為に、PKGの裏面放熱板(ヒートシンク)を基板に 半田付けする事を推奨いたします。

Metal Mask Pattern

Caution ① Mask aperture ratio of the lead mounting part is 100%.

- 2 Mask aperture ratio of the heat sink mounting part is 20%.
- 3 Mask thickness: t0.10 mm

注意 ①リード実装部のマスク開口率は100%です。

- ②放熱板実装のマスク開口率は20%です。
- ③マスク厚み:t0.10 mm

No. PY008-B-L-SD-1.0

٠.			
	TITLE	HSNT-8-C -Land Recommendation	
	No.	PY008-B-L-SD-1.0	
	ANGLE		
	UNIT	mm	
	ABLIC Inc.		

Disclaimers (Handling Precautions)

- 1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.
- 2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of any specific mass-production design.
 - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use of the information described herein.
- 3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described herein.
- 4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute maximum ratings, operation voltage range and electrical characteristics, etc.
 - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to the use of the products outside their specified ranges.
- 5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they are used and verify suitability, safety and other factors for the intended use.
- 6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related laws, and follow the required procedures.
- 7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear, biological or chemical weapons or missiles, or use any other military purposes.
- 8. The products are not designed to be used as part of any device or equipment that may affect the human body, human life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by ABLIC, Inc. Do not apply the products to the above listed devices and equipments.
 - ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of the products.
- 9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social damage, etc. that may ensue from the products' failure or malfunction.
 - The entire system in which the products are used must be sufficiently evaluated and judged whether the products are allowed to apply for the system on customer's own responsibility.
- 10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the product design by the customer depending on the intended use.
- 11. The products do not affect human health under normal use. However, they contain chemical substances and heavy metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be careful when handling these with the bare hands to prevent injuries, etc.
- 12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.
- 13. The information described herein contains copyright information and know-how of ABLIC Inc. The information described herein does not convey any license under any intellectual property rights or any other rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express permission of ABLIC Inc.
- 14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales representative.
- 15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into the English language and the Chinese language, shall be controlling.

