

S-1312xxxH系列

1

www.ablic.com

工作温度105°C、 5.5 V输入、150 mA的电压稳压器

© ABLIC Inc., 2015-2023 Rev.1.3 00

S-1312xxxH系列是使用CMOS技术开发的低消耗电流、高纹波抑制率、低压差的正电压型电压稳压器。

即使消耗电流仅为20 μA (典型值),也能达到75 dB (典型值)的高纹波抑制率,且可使用大于或等于0.22 μF的陶瓷电容器作为输入、输出电容器。

其输出电压精度高达±1.0%。

■ 特点

● 输出电压: 在1.0 V~3.5 V的范围内,可以0.05 V为进阶单位来选择

● 输入电压: 1.5 V ~ 5.5 V

● 输出电压精度: ±1.0% (1.0 V ~ 1.45 V输出产品: ±15 mV)

• 输入输出电压差: 160 mV (典型值) (2.8 V输出产品、louт = 100 mA)

消耗电流:工作时: 20 μA (典型值)、30 μA (最大值)

休眠时: 0.1 μA (典型值)、1.0 μA (最大值)

● 输出电流: 可输出150 mA (V_{IN}≥V_{OUT(S)} + 1.0 V)*1

輸入、輸出电容器: 能够使用大于或等于0.22 μF的陶瓷电容器
纹波抑制率: 75 dB (典型值) (1.2 V输出产品、f = 1.0 kHz)

70 dB (典型值) (2.85 V输出产品、f = 1.0 kHz)

• 内置过载电流保护电路: 限制输出晶体管的过载电流

• 内置热敏关闭电路: 防止因发热引起对产品的破坏

• 内置ON / OFF控制电路: 能够延长电池的使用寿命

可选择放电分路功能的 "有" / "无"

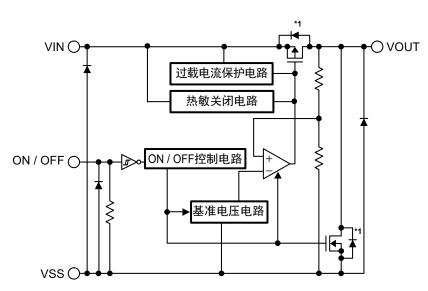
可选择下拉功能的 "有" / "无"

■ 工作温度范围:
Ta = -40°C ~ +105°C

• 无铅 (Sn 100%)、无卤素

*1. 请注意在输出大电流时不要超过IC的容许功耗。

■ 用途

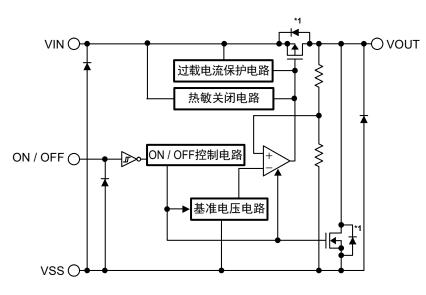

- 以电池供电的设备的稳压电源
- 家电产品的稳压电源

■ 封装

- SOT-23-5
- HSNT-4 (1010)

■ 框图

1. S-1312xxxH系列A型

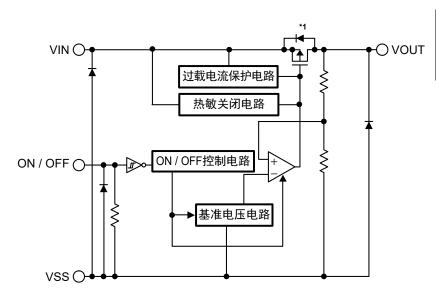


功能	状态
ON / OFF逻辑	动态 "H"
放电分路功能	有
下拉电阻	有

*1. 寄生二极管

图1

2. S-1312xxxH系列B型

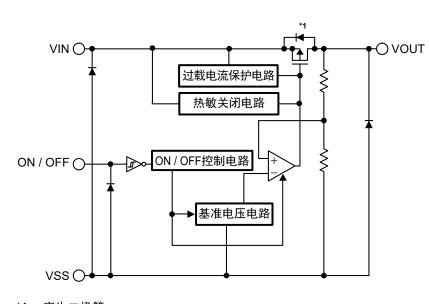


功能	状态
ON / OFF逻辑	动态 "H"
放电分路功能	有
下拉电阻	无

*1. 寄生二极管

图2

3. S-1312xxxH系列C型



功能	状态
ON / OFF逻辑	动态 "H"
放电分路功能	无
下拉电阻	有

*1. 寄生二极管

图3

4. S-1312xxxH系列D型

功能	状态
ON / OFF逻辑	动态 "H"
放电分路功能	无
下拉电阻	无

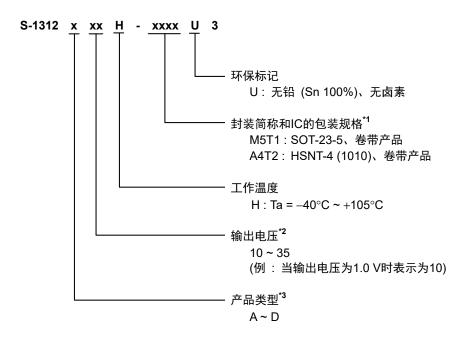

*1. 寄生二极管

图4

■ 产品型号的构成

关于S-1312xxxH系列,用户可根据用途选择指定产品的类型、输出电压值和封装类型。关于产品名的文字含义请参阅 **"1. 产品名"**、关于产品类型请参阅 **"2. 各产品类型的功能一览"**、关于封装图面请参阅 **"3. 封装"**、关于所有的产品名,请 参阅 **"4. 产品名目录"**。

1. 产品名

- *1. 请参阅卷带图。
- *2. 用户需要0.05 V进阶单位的卷带产品时,请向代理商咨询。
- *3. 请参阅 "2. 各产品类型的功能一览"。

2. 各产品类型的功能一览

表1

产品类型	ON / OFF逻辑	放电分路功能	下拉电阻
Α	动态 "H"	有	有
В	动态 "H"	有	无
С	动态 "H"	无	有
D	动态 "H"	无	无

3. 封装

表2 封装图纸号码

封装名	外形尺寸图	卷带图	带卷图	焊盘图
SOT-23-5	MP005-A-P-SD	MP005-A-C-SD	MP005-A-R-SD	_
HSNT-4 (1010)	PL004-A-P-SD	PL004-A-C-SD	PL004-A-R-SD	PL004-A-L-SD

4. 产品名目录

4.1 S-1312xxxH系列A型

ON / OFF逻辑: 动态 "H"

放电分路功能: 有 下拉电阻: 有

表3

输出电压	SOT-23-5	HSNT-4 (1010)
1.2 V ± 15 mV	S-1312A12H-M5T1U3	S-1312A12H-A4T2U3
1.8 V ± 1.0%	S-1312A18H-M5T1U3	S-1312A18H-A4T2U3
2.5 V ± 1.0%	S-1312A25H-M5T1U3	S-1312A25H-A4T2U3
3.3 V ± 1.0%	S-1312A33H-M5T1U3	S-1312A33H-A4T2U3

备注 如果需要上述以外的产品时,请向代理商咨询。

4. 2 S-1312xxxH系列B型

ON / OFF逻辑: 动态 "H"

放电分路功能: 有 下拉电阻: 无

表4

输出电压	SOT-23-5	HSNT-4 (1010)
1.2 V ± 15 mV	S-1312B12H-M5T1U3	S-1312B12H-A4T2U3
1.8 V ± 1.0%	S-1312B18H-M5T1U3	S-1312B18H-A4T2U3
2.5 V ± 1.0%	S-1312B25H-M5T1U3	S-1312B25H-A4T2U3
3.3 V ± 1.0%	S-1312B33H-M5T1U3	S-1312B33H-A4T2U3

备注 如果需要上述以外的产品时,请向代理商咨询。

4. 3 S-1312xxxH系列C型

ON / OFF逻辑: 动态 "H"

放电分路功能: 无 下拉电阻: 有

表5

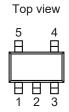
输出电压	SOT-23-5	HSNT-4 (1010)
1.2 V ± 15 mV	S-1312C12H-M5T1U3	S-1312C12H-A4T2U3
1.8 V ± 1.0%	S-1312C18H-M5T1U3	S-1312C18H-A4T2U3
2.5 V ± 1.0%	S-1312C25H-M5T1U3	S-1312C25H-A4T2U3
3.3 V ± 1.0%	S-1312C33H-M5T1U3	S-1312C33H-A4T2U3

备注 如果需要上述以外的产品时,请向代理商咨询。

4. 4 S-1312xxxH系列D型

ON / OFF逻辑: 动态 "H"

放电分路功能: 无 下拉电阻: 无


表6

输出电压	SOT-23-5	HSNT-4 (1010)
1.2 V ± 15 mV	S-1312D12H-M5T1U3	S-1312D12H-A4T2U3
1.8 V ± 1.0%	S-1312D18H-M5T1U3	S-1312D18H-A4T2U3
2.5 V ± 1.0%	S-1312D25H-M5T1U3	S-1312D25H-A4T2U3
3.3 V ± 1.0%	S-1312D33H-M5T1U3	S-1312D33H-A4T2U3

备注 如果需要上述以外的产品时,请向代理商咨询。

■ 引脚排列图

1. SOT-23-5

表7			
引脚号	符号	描述	
1	VIN	电压输入端子	
2	VSS	接地 (GND) 端子	
3	ON / OFF	ON / OFF端子	
4	NC*1	无连接	
5	VOUT	电压输出	

图5

*1. NC表示处于电气开路状态。 所以,可以与VIN端子或VSS端子连接。

2. HSNT-4 (1010)

Top view $\begin{array}{c} 1 & 4 \\ 2 & 3 \end{array}$

۸,

Bottom view

图6

*1. 请将阴影部分的底面散热板与基板连接,并将电位设置为GND。但请不要作为电极使用。

■ 绝对最大额定值

表9

(除特殊注明以外: Ta = +25°C)

项目	符号	绝对最大额定值	单位
输入电压	V _{IN}	$V_{SS} - 0.3 \sim V_{SS} + 6.0$	V
制八 电压	Von / off	$V_{SS} - 0.3 \sim V_{SS} + 6.0$	V
输出电压	V _{OUT}	$V_{SS} - 0.3 \sim V_{IN} + 0.3$	V
输出电流	Гоит	180	mA
工作环境温度	T _{opr}	−40 ~ +105	°C
保存温度	T _{stg}	−40 ~ +125	°C

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性的损伤。

■ 热敏电阻值

表10

松 IO							
项目	符号	条件		最小值	典型值	最大值	单位
			Board A	-	192	_	°C/W
			Board B	1	160	_	°C/W
		SOT-23-5	Board C	1	1	_	°C/W
			Board D	_	-	_	°C/W
结至环境热阻*1 θJA		Board E	1	ı	-	°C/W	
	θJA		Board A	1	378	-	°C/W
		Board B	1	317	-	°C/W	
		HSNT-4 (1010)	Board C	1	1	_	°C/W
			Board D	1		_	°C/W
			Board E	_	_	_	°C/W

^{*1.} 测定环境: 遵循JEDEC STANDARD JESD51-2A标准

备注 关于详情,请参阅 "■ Power Dissipation" 和 "Test Board"。

■ 电气特性

表11

(除特殊注明以外: Ta = +25°C)

	1	I		1	(1987)	朱汪明以タ	. 1u –	
项目	符号	条件		最小值	典型值	最大值	单位	测定 电路
输出电压* ¹	V	$V_{IN} = V_{OUT(S)} + 1.0 V,$	1.0 V≤V _{OUT(S)} <1.5 V	V _{OUT(S)} - 0.015	V _{OUT(S)}	V _{OUT(S)} + 0.015	V	1
- 割山 - 6 下	V _{OUT(E)}	I _{OUT} = 30 mA	1.5 V≤V _{OUT(S)} ≤3.5 V	V _{OUT(S)} × 0.99	V _{OUT(S)}	V _{OUT(S)} × 1.01	V	1
输出电流*2	Гоит	V _{IN} ≥V _{OUT(S)} + 1.0 V		150* ⁵	-	-	mA	3
			1.0 V≤V _{OUT(S)} <1.1 V	0.50	0.68	0.86	V	1
			1.1 V≤V _{OUT(S)} <1.2 V	_	0.52	0.71	٧	1
			1.2 V≤V _{OUT(S)} <1.3 V	-	0.31	0.63	V	1
			1.3 V≤V _{OUT(S)} <1.4 V	_	0.28	0.56	٧	1
			1.4 V≤V _{OUT(S)} <1.5 V	-	0.26	0.50	V	1
输入输出电压差*3	V_{drop}	I _{OUT} = 100 mA	1.5 V≤V _{OUT(S)} <1.7 V	-	0.24	0.47	V	1
			1.7 V≤V _{OUT(S)} <2.0 V	-	0.22	0.43	٧	1
			2.0 V≤V _{OUT(S)} <2.5 V	-	0.18	0.36	V	1
			2.5 V≤V _{OUT(S)} <3.0 V	-	0.16	0.32	V	1
			3.0 V≤V _{OUT(S)} <3.3 V	-	0.15	0.28	V	1
			3.3 V≤V _{OUT(S)} ≤3.5 V	-	0.14	0.27	V	1
松)珠 克萨	ΔV _{OUT1}	1.0 V≤V _{OUT(S)} <1.1 V 1.6 V≤V _{IN} ≤5.5 V, I _{OUT} = 30	1.0 V≤V _{OUT(S)} <1.1 V 1.6 V≤V _{IN} ≤5.5 V, l _{OUT} = 30 mA		0.02	0.1	%/V	1
输入稳定度	$\Delta V_{\text{IN}} \bullet V_{\text{OUT}}$	1.1 V≤V _{OUT(S)} ≤3.5 V V _{OUT(S)} + 0.5 V≤V _{IN} ≤5.5 V,	louт = 30 mA	_	0.02	0.1	%/V	1
	ΔV_{OUT2}	$V_{\text{IN}} = V_{\text{OUT(S)}} + 1.0 \text{ V}, 100 \mu \text{A} \leq I_{\text{OUT}} \leq 100 \text{ mA}$		_	20	40	mV	1
输出电压温度系数*4	$\frac{\Delta V_{OUT}}{\Delta Ta \cdot V_{OUT}}$	V _{IN} = V _{OUT(S)} + 1.0 V, l _{OUT} = 30 mA -40°C≤Ta≤+105°C		-	±130	-	ppm/°C	1
工作时消耗电流	I _{SS1}	V _{IN} = V _{OUT(S)} + 1.0 V, ON / OFF端子为ON、无负载		_	20	30	μА	2
休眠时消耗电流	I _{SS2}	V _{IN} = V _{OUT(S)} + 1.0 V, ON / OFF端子为OFF、无负载		_	0.1	1.0	μA	2
输入电压	Vin	_		1.5	=	5.5	V	_
ON / OFF端子输入电压 "H"	VsH	V _{IN} = V _{OUT(S)} + 1.0 V, R _L = 1.0 kΩ 通过V _{OUT} 输出电位来判断		1.0	-	-	V	4
ON / OFF端子输入电压 "L"	V _{SL}	V _{IN} = V _{OUT(S)} + 1.0 V, R _L = 1 通过V _{OUT} 输出电位来判断	.0 kΩ	_	_	0.25	V	4
ON / OFF 14 7 to 3 to 4 to 10		V _{IN} = 5.5 V,	B / D型 (无下拉电阻)	-0.1	-	0.1	μΑ	4
ON / OFF端子输入电流 "H"	Ish	Von/OFF = 5.5 V	A / C型 (备有下拉电阻)	1.0	2.5	5.0	μΑ	4
ON / OFF端子输入电流 "L"	IsL	V _{IN} = 5.5 V, V _{ON/OFF} = 0 V		-0.1	1	0.1	μΑ	4
		$V_{IN} = V_{OUT(S)} + 1.0 \text{ V},$ f = 1.0 kHz,	1.0 V≤V _{OUT(S)} ≤1.2 V	_	75	_	dB	5
纹波抑制率	RR	$\Delta V_{rip} = 0.5 \text{ Vrms},$	1.2 V < V _{OUT(S)} < 2.85 V	-	70	_	dB	5
		I _{OUT} = 30 mA	2.85 V <v<sub>OUT(S)≤3.5 V</v<sub>	-	65	-	dB	5
短路电流	I _{short}	()	Vin = Vout(s) + 1.0 V, ON / OFF端子为ON, Vout = 0 V		50	-	mA	3
热敏关闭检测温度	T _{SD}	结点温度		-	150	-	°C	
热敏关闭解除温度	T _{SR}	结点温度	A / D.Til	-	120	-	°C	-
休眠时放电分路电阻	R _{Low}	V _{OUT} = 0.1 V, V _{IN} = 5.5 V	(笛有瓜巴刀焰切能)		35	_	Ω	3
休眠用下拉电阻	R _{PD}	_ A / C型 _ (备有下拉电阻)		1.0	2.2	5.0	MΩ	4

***1.** Vоит(s): 设定输出电压值

Vout(E): 实际输出电压值

固定Iout (= 30 mA), 并输入Vout(s) + 1.0 V的电压时的输出电压值

- *2. 缓慢增加输出电流,输出电压达到VouT(E)的95%时的输出电流值
- *3. $V_{drop} = V_{IN1} (V_{OUT3} \times 0.98)$

Vout3: Vin = Vout(s) + 1.0 V, lout = 100 mA时的输出电压值

VIN1 :缓慢降低输入电压,当输出电压降到Vout3的98%时的输入电压

*4. 输出电压的温度变化 [mV/°C],按下式算出。

$$\frac{\Delta V_{\text{OUT}}}{\Delta \text{Ta}} \ \left[\text{mV/}^{\circ}\text{C}\right]^{*1} = V_{\text{OUT(S)}} \left[\text{V}\right]^{*2} \times \frac{\Delta V_{\text{OUT}}}{\Delta \text{Ta} \bullet V_{\text{OUT}}} \ \left[\text{ppm/}^{\circ}\text{C}\right]^{*3} \div 1000$$

- *1. 输出电压的温度变化
- *2. 设定输出电压值
- *3. 上述输出电压温度系数
- *5. 意指能够得到此值为止的输出电流。

由于容许功耗的限制,也有不能满足此值的情况。请注意在输出大电流时的容许功耗。 此规格为设计保证。

■ 测定电路

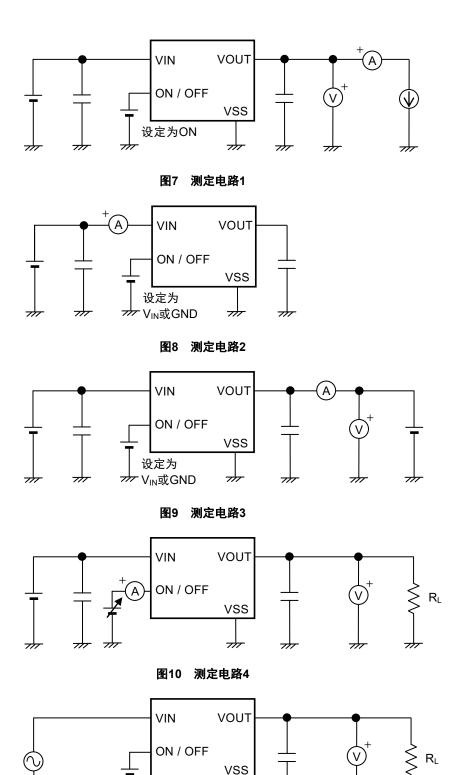
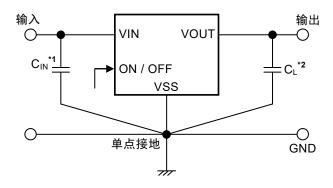



图11 测定电路5

设定为ON

■ 标准电路

- *1. C_{IN}为用于稳定输入的电容器。
- *2. CL可以使用大于或等于0.22 μF的陶瓷电容器。

图12

注意 上述连接图以及参数仅供参考,并不作为保证电路工作的依据。请在进行充分的实测基础上,再设定实际的应 用电路的参数。

■ 使用条件

输入电容器 (C_{IN}) : 大于或等于0.22 μF 输出电容器 (C_L) : 大于或等于0.22 μF

注意 一般而言,线性稳压器有可能因所选择外接元器件的不同发生振荡。请确认使用了上述电容器后,应用电路不发生振荡。

■ 输入、输出电容器 (C_{IN}, C_L) 的选定

S-1312xxxH系列在VOUT端子 – VSS端子间需要连接输出电容器以补偿相位。在整个温度范围内,输出电容器使用大于或等于 $0.22~\mu$ F的陶瓷电容器就可以稳定工作。另外,在使用OS电容器、钽电容器或铝电解电容器时,电容容量也必须大于或等于 $0.22~\mu$ F。

因输出电容容量的不同,作为过渡响应特性,输出过冲值、下冲值将会发生变化。

另外, 输入电容器的必要容量也因应用电路而异。

应用电路的推荐值为 $C_{IN} \ge 0.22$ μF, $C_L \ge 0.22$ μF, 在使用时,请对包括温度等特性予以充分的实测验证。

■ 用语的说明

1. 低压差型电压稳压器

指通过内置低通态电阻晶体管来实现低压差的电压稳压器。

2. 输出电压 (Vout)

在输入电压 *1 、输出电流、温度一定的条件下,输出电压值可保证 $\pm 1.0\%$ 或者 $\pm 15~\text{mV}^{*2}$ 的精度。

- *1. 因产品的不同而有所差异。
- *2. VouT<1.5 V时:±15 mV, VouT≥1.5 V时:±1.0%

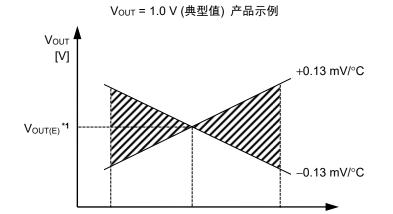
注意 当这些条件发生变化时,输出电压的值也随之发生变化,有可能导致输出电压的精度超出上述范围。详情请 参阅 "■ 电气特性" 及 "■ 各种特性数据 (典型数据)"。

3. 输入稳定度 (ΔV_{IN ●} V_{OUT})

表示输出电压对输入电压的依赖性。即,当输出电流一定时,输出电压随输入电压的变化而产生的变化量。

4. 负载稳定度 (ΔV_{OUT2})

表示输出电压对输出电流的依赖性。即,当输入电压一定时,输出电压随输出电流的变化而产生的变化量。


5. 输入输出电压差 (V_{drop})

缓慢降低输入电压 (V_{IN}) , 当输出电压降低到 $V_{IN} = V_{OUT(S)} + 1.0 V$ 时的输出电压值 (V_{OUT3}) 的98%时, 输入电压 (V_{IN1}) 与输出电压的差即为输入输出电压差。

 $V_{drop} = V_{IN1} - (V_{OUT3} \times 0.98)$

输出电压温度系数 (ΔV_{OUT} ΔTa • V_{OUT})

输出电压温度系数在±130 ppm/°C时的特性,在工作温度范围内表示为如**图13**所示的阴影范围。

*1. V_{OUT(E)} 为Ta = +25°C时的输出电压测定值。

+25

+105

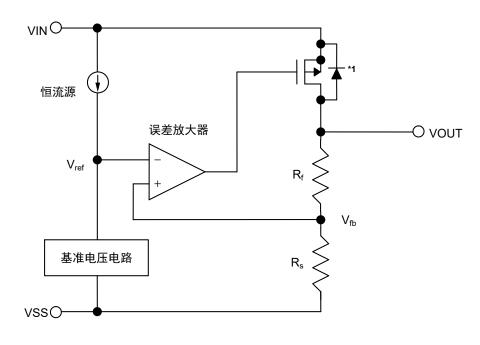
Ta [°C]

图13

输出电压的温度变化 [mV/°C],按下式算出。

$$\frac{\Delta V_{\text{OUT}}}{\Delta \text{Ta}} \ \left[\text{mV/}^{\circ}\text{C}\right]^{*1} = V_{\text{OUT}(S)} \left[\text{V}\right]^{*2} \times \frac{\Delta V_{\text{OUT}}}{\Delta \text{Ta} \bullet V_{\text{OUT}}} \ \left[\text{ppm/}^{\circ}\text{C}\right]^{*3} \div 1000$$

-40


- *1. 输出电压的温度变化
- *2. 设定输出电压值
- *3. 上述输出电压温度系数

■ 工作说明

1. 基本工作

图14所示为S-1312xxxH系列的框图。

输出电压经反馈电阻 $(R_s n R_f)$ 分压,产生反馈电压 (V_{fb}) ,并和基准电压 (V_{ref}) 经误差放大器作比较。通过此误差放大器向输出晶体管提供必要的门极电压,从而使输出电压不受输入电压或温度变化的影响,能够保持一定。

*1. 寄生二极管

图14

2. 输出晶体管

S-1312xxxH系列的输出晶体管采用了低通态电阻的P沟道MOS FET晶体管。

在晶体管的构造上,因在VIN端子 – VOUT端子间存在有寄生二极管,当Vouτ的电位高于VIN时,有可能因反向电流而导致IC被毁坏。因此,请注意Vouτ不要超过VIN + 0.3 V。

3. ON / OFF端子

启动或者停止进行调压工作。

将ON / OFF端子设置为OFF电位后,会停止内部电路的所有工作,关闭VIN端子 – VOUT端子之间内置的P沟道MOS FET输出晶体管,可以大幅度控制消耗电流。

另外,对ON / OFF端子施加 $0.25 \ V \sim V_{IN} - 0.3 \ V$ 的电压后,消耗电流会增大,务请注意。ON / OFF端子的结构如**图15**、**图16**所示。

3.1 S-1312xxxH系列A / C型

ON / OFF端子处于浮动状态时,在内部会被下拉至VSS端子,因此VOUT端子会变为Vss电位。关于ON / OFF端子电流,请参阅 "■ 电气特性" 的ON / OFF端子输入电流 "H" 的A / C型产品。

3. 2 S-1312xxxH系列B / D型

ON / OFF端子在内部即不被上拉也不被下拉,因此请不要在浮动状态下使用。另外,不使用ON / OFF端子时,请将其与VIN端子相连接。

表12

产品类型	ON / OFF端子	内部电路	VOUT端子电压	消耗电流
A/B/C/D	"H" : ON	工作	设定值	I _{SS1} *1
A/B/C/D	"L" : OFF	停止	Vss电位	I _{SS2}

*1. 将ON / OFF端子连接到VIN端子上进行工作时,S-1312xxxH系列A / C型产品的消耗电流中,流入下拉电阻中的电流量会增多,务请注意(请参阅**图15**)。

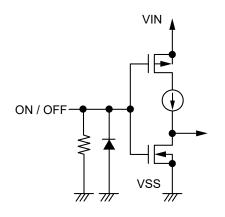


图15 S-1312xxxH系列A / C型

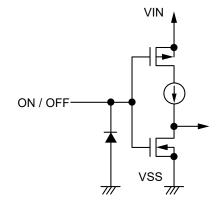
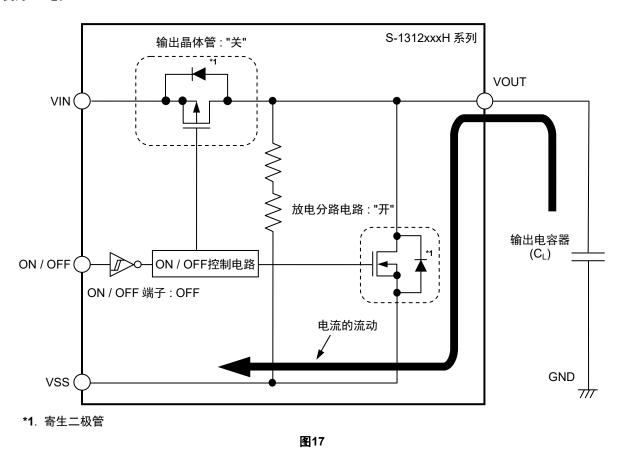


图16 S-1312xxxH系列B / D型


15

4. 放电分路功能 (S-1312xxxH系列A / B型)

S-1312xxxH系列A / B型产品内置了使输出电容放电的放电分路电路。根据以下步骤使输出电容放电后,VOUT端子就变为Vss电位。

- (1) 将ON / OFF端子设定为OFF电位。
- (2) 关闭输出晶体管。
- (3) 打开放电分路电路。
- (4) 使输出电容器放电。

此外,S-1312xxxH系列C / D型产品因没有内置放电分路电路,所以在VOUT端子 – VSS端子间内置有数百kΩ的分流电阻,使VOUT端子变为Vss电位。S-1312xxxH系列A / B型产品凭借放电分路电路,可在最短的时间内使VOUT端子变为Vss电位。

5. 下拉电阻 (S-1312xxxH系列A / C型)

ON / OFF端子处于浮动状态时,在内部会被下拉至VSS端子,因此VOUT端子会变为Vss电位。

将ON / OFF端子连接到VIN端子上进行工作时, S-1312xxxH系列A / C型产品的消耗电流中, 流入 $2.2~M\Omega$ (典型值) 下拉电阻中的电流量会增多,务请注意。

6. 过载电流保护电路

S-1312xxxH系列为了保护输出晶体管免受过大的输出电流及VOUT端子 – VSS端子之间的短路的影响,内置了如 "■ 各种特性数据 (典型数据)" 的 "1. 输出电压 – 输出电流 (负载电流增加时) (Ta = +25°C)" 所示特性的过载电流保护电路。由于输出短路时的电流 (Ishort) 在内部约设定为50 mA (典型值),因此,只要解除短路状态,输出电压即可恢复为正常值。

注意 过载电流保护电路并非兼备过热保护电路。因此,若长时間持续短路状态,请充分注意输入电压、负载电流的条件,使包括短路条件在内的使用条件下的IC功耗不超过容许功耗。

7. 热敏关闭电路

S-1312xxxH系列为了防止因发热而引起的对产品的破坏,内置了热敏关闭电路。当结点温度上升到150°C (典型值)时,热敏关闭电路开始工作,并停止稳压器的工作。当结点温度下降到120°C (典型值)时,热敏关闭电路停止工作,并重新开始进行稳压工作。

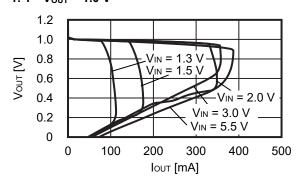
由于产品的自身发热而导致热敏关闭电路开始工作时,稳压器将会停止工作,输出电压也随之下降。在稳压器停止工作之后,产品的自身发热会逐渐消失,IC的温度也随之降低。由于温度的降低,热敏关闭电路会停止工作,因此稳压工作重新开始,再一次发生自身发热的现象。如此反复的工作会使输出电压波形变为脉冲状。要阻止这种稳压工作的停止、再重新开始的现象,只有通过降低输入电压、输出电流的任意一方或双方,促使内部消耗电力变小来实现,或者通过降低周围环境温度来实现。

表13

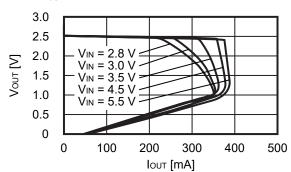
热敏关闭电路	VOUT端子电压
开始工作时:150°C (典型值)*1	Vss电位
解除工作时:120°C(典型值)*1	设定值

^{*1.} 结点温度

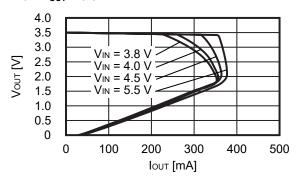
■ 注意事项


- 请充分注意VIN端子、VOUT端子以及GND的布线方式,以降低阻抗。另外,请尽可能将输出电容器 (CL) 连接在VOUT端子 VSS端子附近,将稳定输入用电容器 (CN)连接在VIN端子 VSS端子附近。
- 一般而言,线性稳压器在低负载电流 (小于或等于1.0 mA) 状态下使用时,有可能导致输出电压上升,请加以注意。
- 一般而言,线性稳压器在高温状态下使用时,输出驱动器的泄漏电流有可能导致输出电压上升,请加以注意。
- 即使ON / OFF端子处于OFF电位,在高温状态下使用时,输出驱动器的泄漏电流也有可能导致输出电压上升,请加以注意。
- 一般而言,线性稳压器有可能因所选择外接元器件的不同发生振荡。S-1312xxxH系列特推荐以下条件,但在实际的使用条件下,请对包括温度特性等进行充分的实测验证后再决定。另外,关于输出电容器的等效串联电阻 (Resr),请参阅 "■ 参考数据" 的 "5. 等效串联电阻 输出电流特性例 (Ta = +25°C)"。

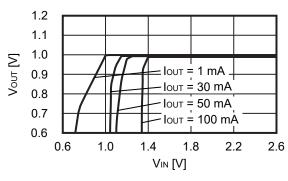
输入电容器 (C_{IN}): 大于或等于0.22 μF 输出电容器 (C_L): 大于或等于0.22 μF


- ◆ 在电源的阻抗较高的情况下,IC的输入端所接电容容量偏小或未接电容时,可能会发生振荡,请加以注意。
- 在IC输出端的电容偏小的情况下,会导致电源变动、负载变动的特性劣化。请在实际使用条件下,对输出电压的变动进行充分的实测。
- 若在接通电源时或电源变动时,急剧提升电压,有可能导致在瞬间使输出电压产生过冲。请在实际使用条件下,对接通电源时的输出电压进行充分的实测。
- 请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过容许功耗。
- 本IC虽内置了防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 有关所需输出电流的设定,请留意 "■ 电气特性"的表11中输出电流值及栏外的注意事项*5。
- 使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格、或因进口国等原因,使包括本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

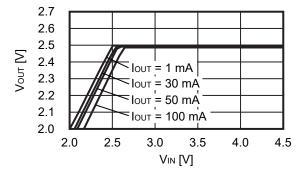
■ 各种特性数据 (典型数据)


- 1. 输出电压 输出电流 (负载电流增加时) (Ta = +25°C)
 - 1. 1 V_{OUT} = 1.0 V

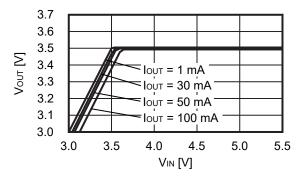
1. 2 $V_{OUT} = 2.5 V$



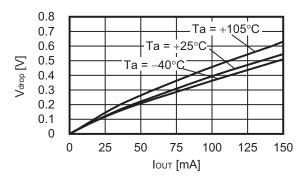
1. 3 V_{OUT} = 3.5 V



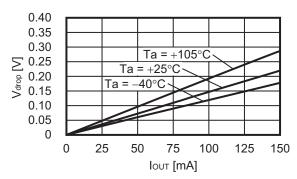
- **备注** 有关所需的输出电流的设定,请注意如下问题。
 - **1.** "■ **电气特性**" 的**表11**中输出电流最小值以及注意事项*5
 - 2. 容许功耗


- 2. 输出电压 输入电压 (Ta = +25°C)
 - 2. 1 V_{OUT} = 1.0 V

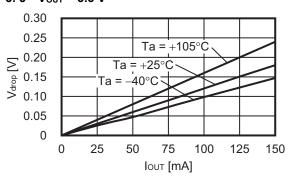
2. 2 V_{OUT} = 2.5 V

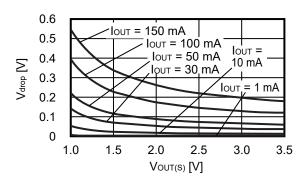


2. 3 V_{OUT} = 3.5 V



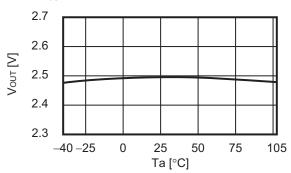
3. 输入输出电压差 - 输出电流


3. 1 Vout = 1.0 V

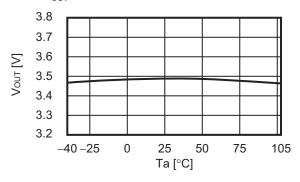

3. 2 Vout = 2.5 V

3. 3 V_{OUT} = 3.5 V

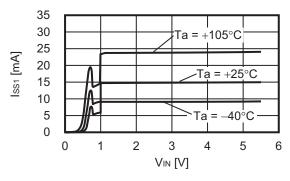
4. 输入输出电压差 – 设定输出电压



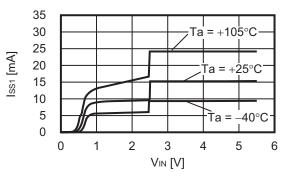
5. 输出电压 - 环境温度


5. 1 V_{OUT} = 1.0 V

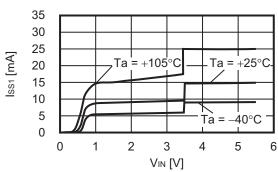
5. 2 V_{OUT} = 2.5 V



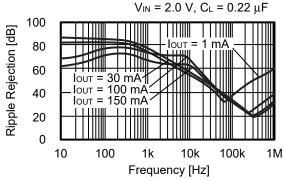
5. 3 $V_{OUT} = 3.5 V$



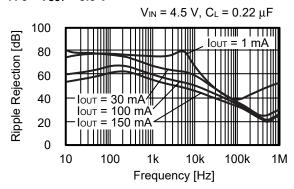
6. 消耗电流 - 输入电压


6. 1 V_{OUT} = 1.0 V

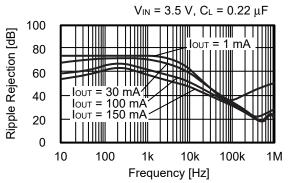
6. 2 Vout = 2.5 V



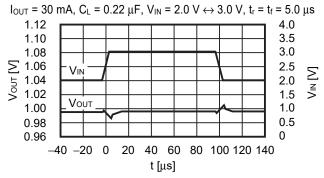
6. 3 V_{OUT} = 3.5 V

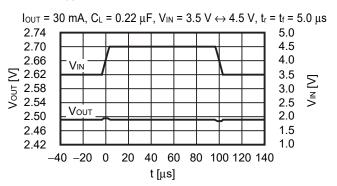


7. 纹波抑制率 (Ta = +25°C)

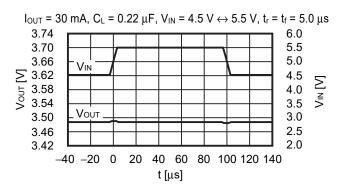

7. 1 V_{OUT} = 1.0 V

7. 3 V_{OUT} = 3.5 V

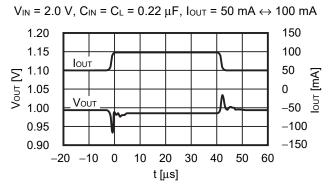

7. 2 V_{OUT} = 2.5 V


■ 参考数据

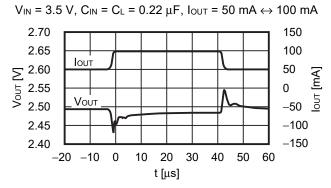
1. 输入过渡响应特性 (Ta = +25°C)


1. 1 $V_{OUT} = 1.0 V$

1. 2 $V_{OUT} = 2.5 V$



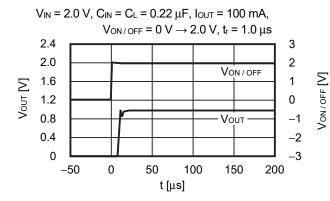
1. 3 Vout = 3.5 V



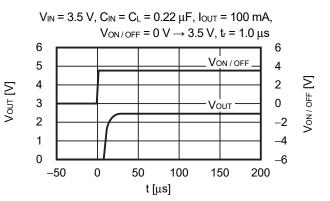
2. 负载过渡响应特性 (Ta = +25°C)

2. 1 Vout = 1.0 V

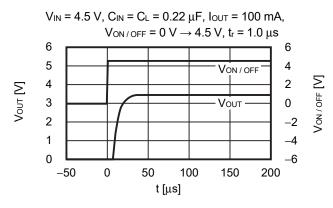
2. 2 V_{OUT} = 2.5 V



2. 3 $V_{OUT} = 3.5 V$



3. ON / OFF端子过渡响应特性 (Ta = +25°C)


3. 1 V_{OUT} = 1.0 V

3. 2 $V_{OUT} = 2.5 V$

3. 3 V_{OUT} = 3.5 V

4. 输出电容 – 放电时间特性 (Ta = +25°C)

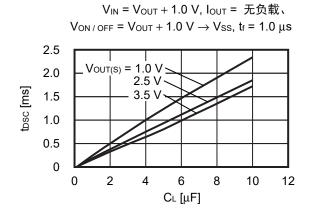


图18 S-1312xxxH系列A / B型 (备有放电分路功能)

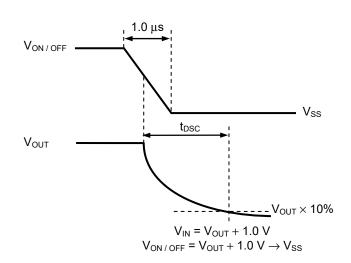


图19 放电时间的测定条件

5. 等效串联电阻 - 输出电流特性例 (Ta = +25°C)

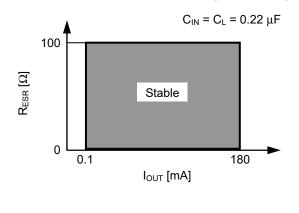
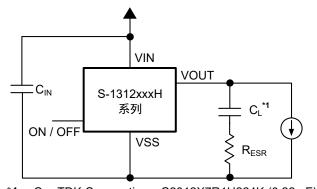
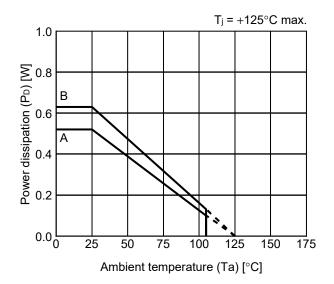
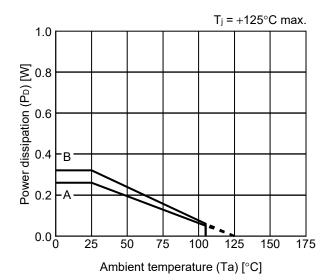



图20



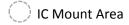
*1. C_L : TDK Corporation C2012X7R1H224K (0.22 μF)

图21


■ Power Dissipation

1. SOT-23-5

Board	Power Dissipation (P _D)
A	0.52 W
В	0.63 W
С	_
D	-
Е	_


2. HSNT-4 (1010)

Board	Power Dissipation (P _D)
А	0.26 W
В	0.32 W
С	-
D	_
F	

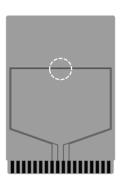
SOT-23-3/3S/5/6 Test Board

(1) Board A

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		2
	1	Land pattern and wiring for testing: t0.070
Coppor foil lover [mm]	2	-
Copper foil layer [mm]	3	-
	4	74.2 x 74.2 x t0.070
Thermal via		-

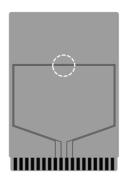
(2) Board B

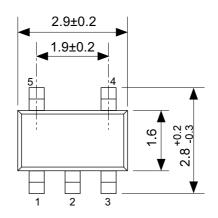


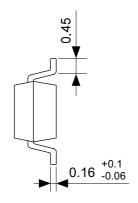

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
	1	Land pattern and wiring for testing: t0.070
Copper foil layer [mm]	2	74.2 x 74.2 x t0.035
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

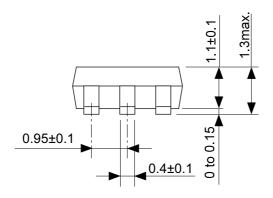
No. SOT23x-A-Board-SD-2.0

HSNT-4(1010) Test Board


(1) Board A

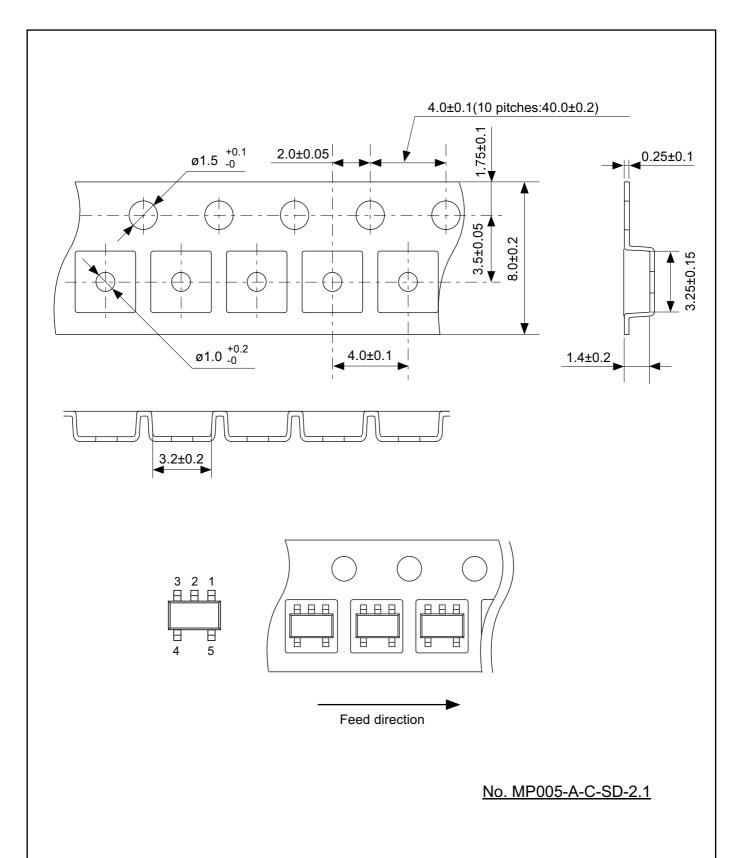

Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		2
	1	Land pattern and wiring for testing: t0.070
Copper foil layer [mm]	2	-
Copper foil layer [min]	3	-
	4	74.2 x 74.2 x t0.070
Thermal via		-

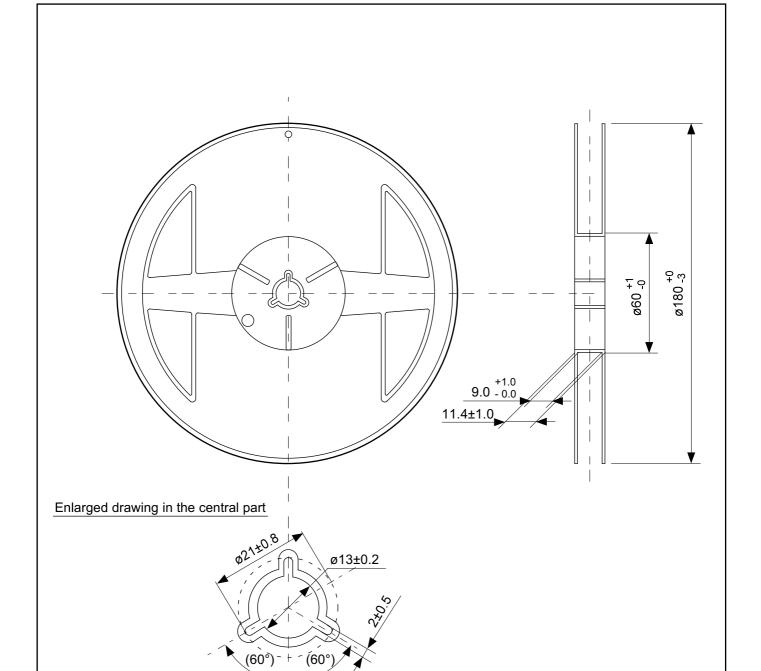

(2) Board B



Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
	1	Land pattern and wiring for testing: t0.070
Cappar fail layer [mm]	2	74.2 x 74.2 x t0.035
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

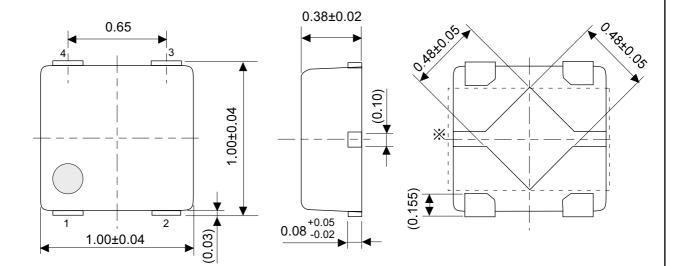
No. HSNT4-B-Board-SD-1.0

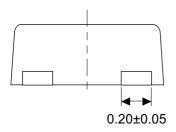




No. MP005-A-P-SD-1.3

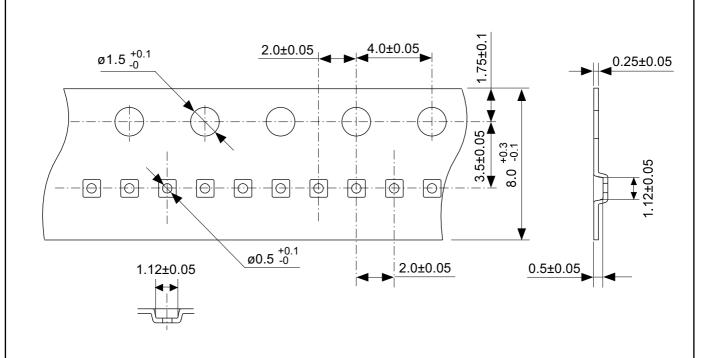
TITLE	SOT235-A-PKG Dimensions			
No.	MP005-A-P-SD-1.3			
ANGLE	\$			
UNIT	mm			
ABLIC Inc.				

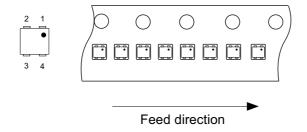



TITLE	SOT235-A-Carrier Tape	
No.	MP005-A-C-SD-2.1	
ANGLE		
UNIT	mm	
ABLIC Inc.		

No. MP005-A-R-SD-2.0

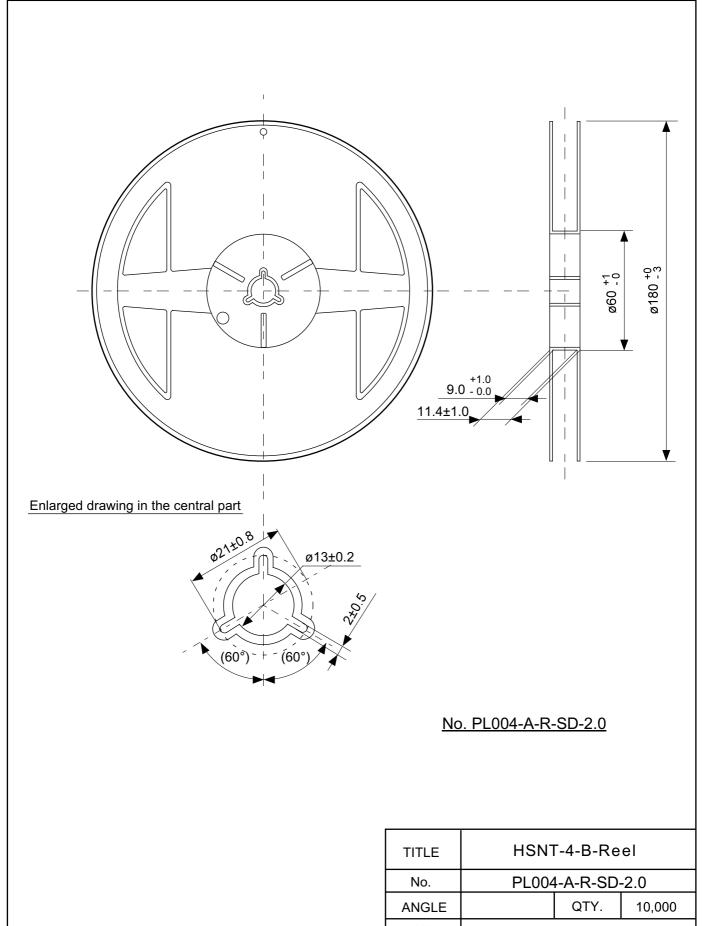
TITLE	SOT235-A-Reel			
No.	MP005-A-R-SD-2.0			
ANGLE		QTY.	3,000	
UNIT	mm			
ABLIC Inc.				

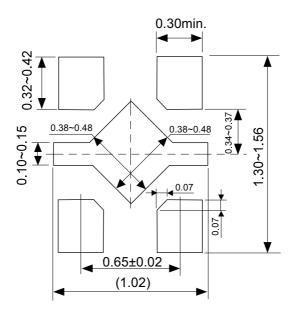




Confirm specifications of each product. Do not use it as the function of electrode.

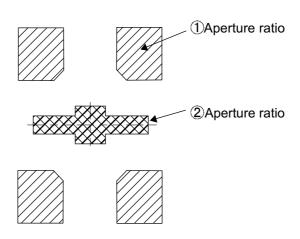
No. PL004-A-P-SD-1.1


TITLE	HSNT-4-B-PKG Dimensions	
No.	PL004-A-P-SD-1.1	
ANGLE	\$	
UNIT	mm	
ADLICIES		
ABLIC Inc.		


No. PL004-A-C-SD-2.0

TITLE	HSNT-4-B-Carrier Tape	
No.	PL004-A-C-SD-2.0	
ANGLE		
UNIT	mm	
ABLIC Inc.		

TITLE	HSNT-4-B-Reel			
No.	PL004-A-R-SD-2.0			
ANGLE		QTY.	10,000	
UNIT	mm			
ABLIC Inc.				


Land Pattern

Caution It is recommended to solder the heat sink to a board in order to ensure the heat radiation.

注意 放熱性を確保する為に、PKGの裏面放熱板(ヒートシンク)を基板に 半田付けする事を推奨いたします。

Metal Mask Pattern

- Caution ① Mask aperture ratio of the lead mounting part is 100%.
 - 2 Mask aperture ratio of the heat sink mounting part is 40%.
 - 3 Mask thickness: t0.10mm to 0.12 mm

注意 ①リード実装部のマスク開口率は100%です。

- ②放熱板実装のマスク開口率は40%です。
- ③マスク厚み: t0.10mm~0.12 mm

No. PL004-A-L-SD-2.0

TITLE	HSNT-4-B -Land Recommendation	
No.	PL004-A-L-SD-2.0	
ANGLE		
UNIT	mm	
ABLIC Inc		

免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可能未经预告而更改。
- 2. 本资料记载的电路示例和使用方法仅供参考,并非保证批量生产的设计。使用本资料的信息后,发生并非因本资料记载的产品(以下称本产品)而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承担任何责任。
- 3. 因本资料记载错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本产品并非是设计用于可能对生命、人体造成影响的设备或装置的部件,也非是设计用于可能对财产造成损害的设备或装置的部件(医疗设备、防灾设备、安全防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。请勿将本产品用于上述设备或装置的部件。本公司事先明确标示的车载用途例外。作为上述设备或装置的部件使用本产品时,或本公司事先明确标示的用途以外使用本产品时,所导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。为了防止因本产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。本资料记载的内容并非是对本公司或第三方的知识产权、 其它权利的实施及使用的承诺或保证。严禁在未经本公司许可的情况下转载、复制或向第三方公开本资料的一部分或全 部。
- 14. 有关本资料的详细内容等如有不明之处,请向代理商咨询。
- 15. 本免责事项以日语版为正本。即使有英语版或中文版的翻译件, 仍以日语版的正本为准。

2.4-2019.07

