

1



#### www.ablic.com

## 可编程、高速响应的 线性霍尔效应传感器IC

© ABLIC Inc., 2025 Rev.3.0\_00

本IC是采用CMOS技术开发的可编程的快速响应线性霍尔效应传感器IC。以VREF端子电压为基准,输出与磁速密度成比例的 电压。

本IC内置有非易失性存储器,通过2线串行接口可以对IC功能的切换和剪切调整进行自由设定。功能切换可以切换基准电压工作模式、基准电压输出、输出电压极性、频带宽度、热敏关闭的各项功能。剪切调整可以高精度地调整磁性灵敏度、磁性灵敏度温度漂移、输出失调电压、基准电压输出。

因可快速响应, 最适用于瞬时过电流监控等电流传感器用途。

## ■ 特点

● 输出响应时间: 2.5 µs max. (频带 400 kHz)

与磁束密度成比例的模拟电压输出: 以VREF端子电压为基准工作,非线性±0.5% max.
 由于是非比率工作,对电源噪声具有很高的抵抗力

• 内置热敏关闭电路: 检测温度170°C typ.

• 功能切换 基准电压工作模式: 基准电压输出模式\*1、基准电压输入模式

基准电压输出: 0.50 V, 1.50 V, 1.65 V, 2.50 V\*1

输出电压极性: 正极\*1、负极 频带宽度: 100 kHz, 200 kHz, 400 kHz\*1

th 免疫: 100 kHz, 200 kHz, 400 kHz · · √敏关闭: 有\*1、无

热敏关闭: 有\*1、 ● 剪切调整

- 努力利定 - 磁性灵敏度: 6 V/T ~ 180 V/T (130 V/T typ.\*1)、0.3%进阶 max.

磁性灵敏度温度漂移: -500 ppm/°C ~ +500 ppm/°C (0 ppm/°C typ.\*1), 25 ppm/°C进阶 typ.

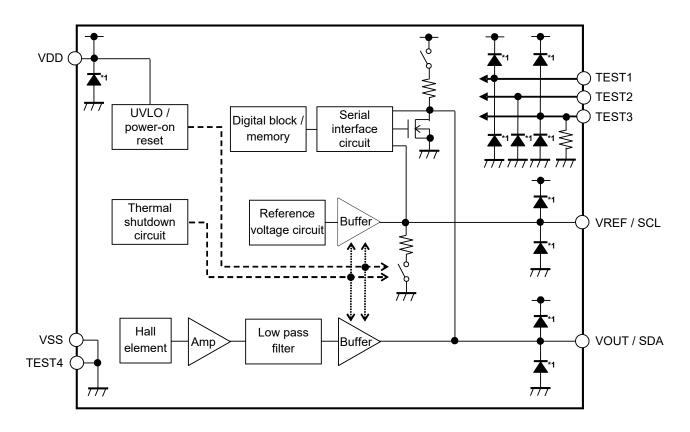
输出失调电压: 1.5 mV进阶 max. 基准电压输出: 4.0 mV进阶 max.

● 电源电压范围: V<sub>DD</sub> = 4.5 V ~ 5.5 V

消耗电流:
 工作温度范围:
 I<sub>DD</sub> = 19 mA typ.
 Ta = -40°C ~ +125°C

● 无铅 (Sn 100%)、无卤素

\*1. 出厂时的默认设定

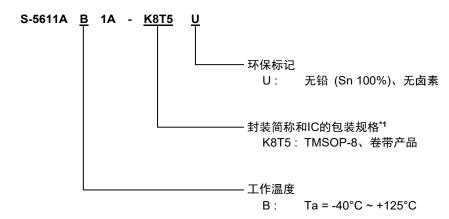

### ■ 用途

- 磁芯电流传感器
- 线性位置检测
- 旋转检测

### ■ 封装

TMSOP-8

## ■ 框图




\*1. 寄生二极管

图1

## ■ 产品型号的构成

## 1. 产品名



\*1. 请参阅卷带图。

## 2. 封装

表1 封装图纸号码

| 封装名     | 封装名 外形尺寸图    |              | 带卷图          |
|---------|--------------|--------------|--------------|
| TMSOP-8 | FM008-A-P-SD | FM008-A-C-SD | FM008-A-R-SD |

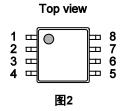

## 3. 产品名目录

表2

| 产品名              | 封装      |
|------------------|---------|
| S-5611AB1A-K8T5U | TMSOP-8 |

## ■ 引脚排列图

## 1. TMSOP-8



## 表3

| 引脚号 | 符号             |             | 描述          |  |
|-----|----------------|-------------|-------------|--|
| 4   | VDEE / 001 *1  | VREF        | 基准电压输入/输出端子 |  |
| 1   | VREF / SCL*1   | SCL         | 串行时钟输入端子    |  |
|     | VOLIT / CD 4*2 | VOUT        | 输出端子        |  |
| 2   |                | SDA         | 串行数据输入/输出端子 |  |
| 3   | VSS            | 接地 (GND) 端子 |             |  |
| 4   | TEST4*3        | 测试4端子       | -           |  |
| 5   | VDD            | 电源端子        |             |  |
| 6   | TEST1*4        | 测试1端子       | -           |  |
| 7   | TEST2*4        | 测试2端子       | -           |  |
| 8   | TEST3*4        | 测试3端子       | -           |  |

- \*1. VREF / SCL端子兼作基准电压输入 / 输出端子和串行时钟输入端子。
- \*2. VOUT / SDA端子兼作输出端子和串行数据输入 / 输出端子。
- \*3. TEST4端子被短路于VSS端子 (参阅图1)。设定为开路状态使用。
- \*4. 将TEST1端子、TEST2端子、TEST3端子设定为开路状态使用。

## ■ 绝对最大额定值

表4

(除特殊注明以外: Ta = +25°C)

| 项目     | 符号               | 适用端子         | 绝对最大额定值                                       | 单位 |
|--------|------------------|--------------|-----------------------------------------------|----|
| 电源电压   | $V_{DD}$         | VDD          | V <sub>SS</sub> - 0.3 ~ V <sub>SS</sub> + 6.5 | V  |
|        | $V_{REF}$        | VREF / SCL   | $V_{SS}$ - 0.3 ~ $V_{DD}$ + 0.3               | V  |
| 输入输出电压 | V <sub>SCL</sub> | VREF / SCL   | $V_{SS}$ - 0.3 ~ $V_{DD}$ + 0.3               | V  |
|        | Vout             | VOUT / SDA   | $V_{SS}$ - 0.3 ~ $V_{DD}$ + 0.3               | V  |
| 初入制山屯压 | V <sub>SDA</sub> | VOUT / SDA   | $V_{SS}$ - 0.3 ~ $V_{DD}$ + 0.3               | V  |
|        | V                | TEST1, TEST3 | $V_{SS}$ - 0.3 ~ $V_{DD}$ + 0.3               | V  |
|        | V <sub>I/O</sub> | TEST2        | Vss - 0.3 ~ Vss + 1.98                        | V  |
| 结点温度   | Tj               | -            | -40 ~ +175                                    | °C |
| 工作环境温度 | Topr             | -            | -40 ~ +125                                    | °C |
| 保存温度   | T <sub>stg</sub> | -            | -40 ~ +150                                    | °C |

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

## ■ 热敏电阻值

表5

| 项目       |  | 符号  | 条件      |         | Min. | Тур. | Max. | 单位   |
|----------|--|-----|---------|---------|------|------|------|------|
| 结至环境热阻*1 |  | θја |         | Board A | -    | 160  | -    | °C/W |
|          |  |     |         | Board B | -    | 133  | ı    | °C/W |
|          |  |     | TMSOP-8 | Board C | -    | -    | -    | °C/W |
|          |  |     |         | Board D | -    | -    | -    | °C/W |
|          |  |     |         | Board E | -    | -    | -    | °C/W |

<sup>\*1.</sup> 测定环境: 遵循JEDEC STANDARD JESD51-2A标准

备注 关于详情,请参阅 "■ Power Dissipation" 和 "Test Board"。

## ■ 电气特性

## 1. 线性霍尔效应传感器工作

### 1.1 电源特性

表6

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V, V<sub>REF</sub> = 2.5 V, S = 130 V/T, B = 0 mT, 默认值\*1)

| (            |                      | , , ,                                                                                            | . ,  |      | ,    | , . |          |
|--------------|----------------------|--------------------------------------------------------------------------------------------------|------|------|------|-----|----------|
| 项目           | 符号                   | 条件                                                                                               | Min. | Тур. | Max. | 单位  | 测定<br>电路 |
| 电源电压         | $V_{DD}$             | -                                                                                                | 4.5  | 5.0  | 5.5  | V   | -        |
| 消耗电流         | I <sub>DD</sub>      | Ta = $-40^{\circ}$ C ~ $+125^{\circ}$ C<br>(T <sub>j</sub> = $-40^{\circ}$ C ~ $+150^{\circ}$ C) | -    | 19   | 22   | mA  | 1        |
| UVLO解除电压     | V <sub>UVLOR</sub>   | -                                                                                                | 4.15 | 4.30 | 4.45 | V   | 1        |
| UVLO检测电压     | Vuvlod               | -                                                                                                | 3.95 | 4.10 | 4.25 | V   | 1        |
| UVLO滞后电压     | V <sub>UVLOHYS</sub> | -                                                                                                | -    | 0.2  | -    | V   | -        |
| UVLO检测延迟时间*2 | tDELAY_UVLOD         | -                                                                                                | -    | 1.0  | -    | ms  | -        |
| 电源接通复位阈值电压   | $V_{PON}$            | -                                                                                                | -    | 2.90 | -    | V   | -        |
| 电源切断阈值电压     | $V_{POFF}$           | -                                                                                                | -    | 2.80 | -    | V   | -        |
| 电源接通复位滞后电压   | V <sub>PHYS</sub>    | -                                                                                                | -    | 0.10 | -    | V   | -        |
| 热敏关闭检测温度     | T <sub>SD</sub>      | 结点温度                                                                                             | -    | 170  | -    | °C  | -        |
| 热敏关闭解除温度     | T <sub>SR</sub>      | 结点温度                                                                                             | -    | 155  | -    | °C  | -        |
| 启动时间*3       | t <sub>PON</sub>     | $C_{LOUT} = 4.7 \text{ nF}, C_{LREF} = 47 \text{ nF}$                                            | -    | 0.9  | 1.0  | ms  | -        |

<sup>\*1.</sup> IC的功能设定和剪切调整为出厂时的默认设定。

<sup>\*2.</sup> 请参阅 "■ 工作说明" 的 "3.1 电源电压下降检测电路"

<sup>\*3.</sup> 请参阅 "■ 工作说明" 的 "2.12 启动时间"

### 1.2 磁特性

表7

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V, V<sub>REF</sub> = 2.5 V, S = 130 V/T, B = 0 mT, 默认值\*1)

| 项目                                        | 符号                                    | 条件                                                                                        |                            | Min.                                             | Тур. | Max. | 单位     | 测定<br>电路 |   |
|-------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------|------|------|--------|----------|---|
| 施加最大磁束密度*2,3                              | B <sub>MAX</sub>                      | 最小磁性灵敏度设定时                                                                                |                            |                                                  | -    | -    | mT     | 1        |   |
| 磁性灵敏度线性误差*4                               | LIN                                   | Ta = -40°C ~ +125°C (T <sub>j</sub> = -40°C ~                                             | +150°C)                    | -0.5                                             | -    | 0.5  | %      | 1        |   |
| 磁性灵敏度*5                                   | S                                     | 出厂时的默认设定                                                                                  |                            | -                                                | 130  | -    | V/T    | -        |   |
| 磁性灵敏度设定范围                                 | S <sub>RNG</sub>                      | -                                                                                         |                            | 6                                                | -    | 180  | V/T    | 1        |   |
| 磁性灵敏度调整进阶                                 | SSTEP                                 | 计算公式A<br>(S@n + 1 [LSB] - S@n [LSB]) / S@                                                 | -                          | 80.0                                             | 0.15 | %    | 1      |          |   |
|                                           |                                       | @n + 1 [LSB] - S@n [LSB]) / S@n [LSB]                                                     |                            | 计算公式B<br>(S@n + 1 [LSB] - S@n [LSB]) / S@n [LSB] | 1    | 0.18 | 0.30   | %        | 1 |
| 磁性灵敏度温度漂移*6                               | TCS                                   | Ta = $-40^{\circ}$ C ~ $+125^{\circ}$ C (T <sub>j</sub> = $-40^{\circ}$ C ~               | +150°C)                    | -200                                             | 0    | 200  | ppm/°C | 1        |   |
| 磁性灵敏度温度漂移<br>设定范围                         | TCS <sub>RNG</sub>                    | Ta = -40°C ~ +125°C ( $T_j$ = -40°C ~                                                     | +150°C)                    | -500                                             | -    | 500  | ppm/°C | 1        |   |
| 磁性灵敏度温度漂移<br>调整进阶                         | TCS <sub>STEP</sub>                   | Ta = -40°C ~ +125°C (T <sub>j</sub> = -40°C ~                                             | +150°C)                    | -                                                | 25   | -    | ppm/°C | -        |   |
| 输出响应时间* <sup>7</sup> t <sub>RSP_OUT</sub> |                                       | C <sub>LOUT</sub> = 4.7 nF,                                                               | $f_{BW} = 400 \text{ kHz}$ | -                                                | 1.25 | 2.50 | μs     | 1        |   |
|                                           | C <sub>LREF</sub> = 47 nF, B = 10 mT, | $f_{BW} = 200 \text{ kHz}$                                                                | -                          | 2.50                                             | 3.75 | μs   | 1      |          |   |
|                                           |                                       |                                                                                           | $f_{BW} = 100 \text{ kHz}$ | -                                                | 5.00 | 6.00 | μs     | 1        |   |
|                                           |                                       | C <sub>LOUT</sub> = 4.7 nF,                                                               | $f_{BW} = 400 \text{ kHz}$ | -                                                | 0.75 | 1.75 | μs     | 1        |   |
| 输出反应时间*7                                  | t <sub>RAC_OUT</sub>                  | C <sub>LREF</sub> = 47 nF, B = 10 mT,                                                     | $f_{BW} = 200 \text{ kHz}$ | -                                                | 1.25 | 2.00 | μs     | 1        |   |
|                                           |                                       | В 10% ~ Vоит 10%为止的时间                                                                     | $f_{BW} = 100 \text{ kHz}$ | -                                                | 2.00 | 3.00 | μs     | 1        |   |
|                                           |                                       | C <sub>LOUT</sub> = 4.7 nF,                                                               | $f_{BW} = 400 \text{ kHz}$ | -                                                | 2.5  | 5.0  | μs     | 1        |   |
| 输出稳定时间* <sup>2,7</sup>                    | tset_out                              | C <sub>LREF</sub> = 47 nF, B = 10 mT,<br>在V <sub>OUT</sub> 10% ~ V <sub>OUT</sub> 稳态的3%以内 | f <sub>BW</sub> = 200 kHz  | -                                                | 4.0  | 6.5  | μs     | 1        |   |
|                                           |                                       | 至静定为止的时间                                                                                  | f <sub>BW</sub> = 100 kHz  | -                                                | 5.5  | 8.0  | μs     | 1        |   |
| 输出过冲 <sup>*2, 7</sup>                     | os                                    | C <sub>LOUT</sub> = 4.7 nF, C <sub>LREF</sub> = 47 nF, B =<br>针对V <sub>OUT</sub> 稳态的过冲    | 10 mT,                     | -                                                | -    | 10   | %      | 1        |   |
| 频带宽度                                      | f <sub>BW</sub>                       | 出厂时的默认设定,<br>C <sub>LOUT</sub> = 4.7 nF, C <sub>LREF</sub> = 47 nF,<br>磁性灵敏度为-3 dB的频率     |                            | -                                                | 400  | -    | kHz    | -        |   |
|                                           |                                       | C                                                                                         |                            | -                                                | 400  | -    | kHz    | -        |   |
| 频带宽度设定范围                                  | f <sub>BWRNG</sub>                    | C <sub>LOUT</sub> = 4.7 nF, C <sub>LREF</sub> = 47 nF,<br>磁性灵敏度为-3 dB的频率                  |                            | -                                                | 200  | -    | kHz    | -        |   |
|                                           |                                       |                                                                                           |                            | -                                                | 100  | -    | kHz    | -        |   |

- \*1. IC的功能设定和剪切调整为出厂时的默认设定。
- \*2. 此项目为设计规格保证。
- \*3. 请参阅 "■ **工作说明**" 的 "2. 6 施加最大磁束密度"
- \*4. 请参阅 "■ 工作说明" 的 "2.7 磁性灵敏度线性误差"
- \*5. 请参阅 "■ 工作说明" 的 "2.4 磁性灵敏度"
- \*6. 请参阅 "■ 工作说明" 的 "2.5 磁性灵敏度温度漂移"
- \*7. 请参阅 "■ **工作说明**" 的 "2. 11 输出响应"

备注 按照1 mT = 10 Gauss的公式换算磁束密度的单位mT。

### 1.3 输出电压特性

表8

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V, V<sub>REF</sub> = 2.5 V, S = 130 V/T, B = 0 mT, 默认值\*1)

| 项目                   | 符号                     | 条件                                                                                                                                            |                                                                                       | Min.   | Тур. | Max.  | 单位         | 测定<br>电路 |
|----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------|------|-------|------------|----------|
| 输出失调电压*2             | Voff                   | 出厂时的默认设定                                                                                                                                      | -                                                                                     | 0      | -    | mV    | 1          |          |
| 输出失调电压设定范围           | Voffrng                | -                                                                                                                                             |                                                                                       | -100   | -    | 100   | mV         | 1        |
| 输出失调电压调整进阶           | VOFFSTEP               | -                                                                                                                                             |                                                                                       | -      | 0.6  | 1.5   | mV         | 1        |
| 输出失调电压温度漂移*3         | Tcvoff                 | Ta = -40°C $\sim$ +125°C<br>(T <sub>j</sub> = -40°C $\sim$ +150°C                                                                             |                                                                                       | -0.075 | 0    | 0.075 | mV/°C      | 1        |
| 输出电压 "H"             | V <sub>О</sub> Т_Н     | Ta = $-40^{\circ}$ C ~ $+125^{\circ}$ C<br>(T <sub>j</sub> = $-40^{\circ}$ C ~ $+150^{\circ}$ C                                               |                                                                                       | 4.85   | -    | -     | V          | 1        |
| 输出电压 "L"             | V <sub>OUT_L</sub>     | Ta = $-40^{\circ}$ C ~ $+125^{\circ}$ C<br>(T <sub>i</sub> = $-40^{\circ}$ C ~ $+150^{\circ}$ C                                               |                                                                                       | -      | -    | 0.15  | V          | 1        |
| 输出源电流                | lout_soc               | V <sub>OUT</sub> = V <sub>SS</sub>                                                                                                            | •                                                                                     | 17     | 22   | 27    | mA         | 2        |
| 输出吸收电流               | I <sub>OUT_SNK</sub>   | $V_{OUT} = V_{DD}$                                                                                                                            |                                                                                       | 17     | 22   | 27    | mA         | 2        |
| 输出电阻                 | Rоит                   | $I_{OUT} = \pm 1.25 \text{ mA},$ $Ta = -40^{\circ}\text{C} \sim +125^{\circ}\text{C}$ $(T_i = -40^{\circ}\text{C} \sim +150^{\circ}\text{C})$ | $I_{OUT} = \pm 1.25 \text{ mA},$ $Ta = -40^{\circ}\text{C} \sim +125^{\circ}\text{C}$ |        | 1    | 4     | Ω          | 3        |
| 输出端子负载电阻             | R <sub>LOUT</sub>      | 连接于VOUT端子 - V<br>Ta = -40°C ~ +125°C<br>(T <sub>j</sub> = -40°C ~ +150°C                                                                      | ;                                                                                     | 2      | -    | -     | kΩ         | -        |
| 输出端子负载电容             | C <sub>LOUT</sub>      |                                                                                                                                               | 连接于VOUT端子 - VSS端子之间,<br>Ta = -40°C ~ +125°C                                           |        | 4.7  | 6.0   | nF         | -        |
| 根据输入磁束密度换算<br>噪声电压密度 | B <sub>NOISE</sub>     | f = 10 kHz                                                                                                                                    |                                                                                       | -      | 0.09 | -     | μT/√Hz     | -        |
|                      |                        |                                                                                                                                               | $f_{BW} = 400 \text{ kHz}$                                                            | -      | 1.89 | -     | $mV_{rms}$ | -        |
| 输出噪声电压               | V <sub>NOISE_RMS</sub> | S = 30 V/T                                                                                                                                    | $f_{BW} = 200 \text{ kHz}$                                                            | -      | 1.40 | -     | $mV_{rms}$ | -        |
|                      |                        |                                                                                                                                               | $f_{BW} = 100 \text{ kHz}$                                                            | -      | 1.08 | -     | $mV_{rms}$ | -        |

<sup>\*1.</sup> IC的功能设定和剪切调整为出厂时的默认设定。

<sup>\*2.</sup> 请参阅 "■ **工作说明**" 的 "2. 8 输出失调电压"

<sup>\*3.</sup> 请参阅 "■ 工作说明" 的 "2.9 输出失调电压温度漂移"

### 1.4 基准电压特性

表9

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V, V<sub>REF</sub> = 2.5 V, S = 130 V/T, B = 0 mT, 默认值\*1)

| (1.2.12)               |                      | , == , ==                                                                                                                                                               |      |      |      |        |          |
|------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|--------|----------|
| 项目                     | 符号                   | 条件                                                                                                                                                                      | Min. | Тур. | Max. | 单位     | 测定<br>电路 |
| 基准电压输出模式               |                      |                                                                                                                                                                         |      |      |      |        |          |
| 基准电压输出                 | V <sub>REF</sub>     | 出厂时的默认设定                                                                                                                                                                | 2.48 | 2.50 | 2.52 | V      | 1        |
|                        |                      | V <sub>REF</sub> = 2.50 V                                                                                                                                               | -    | 2.50 | -    | V      | 1        |
| 基准电压设定范围               | .,                   | V <sub>REF</sub> = 1.65 V                                                                                                                                               | -    | 1.65 | -    | V      | 1        |
| <b>基准</b> 电压           | VREFRNG              | V <sub>REF</sub> = 1.50 V                                                                                                                                               | -    | 1.50 | -    | V      | 1        |
|                        |                      | V <sub>REF</sub> = 0.50 V                                                                                                                                               | -    | 0.50 | -    | V      | 1        |
| 基准电压调整进阶               | V <sub>REFSTEP</sub> | V <sub>REF</sub> = 2.50 V                                                                                                                                               | -    | 2.5  | 4.0  | mV     | 1        |
| 基准电压温度漂移* <sup>2</sup> | _                    | $V_{REF} = 2.5 \text{ V} / 1.65 \text{ V} / 1.5 \text{ V},$ $Ta = -40^{\circ}\text{C} \sim +125^{\circ}\text{C}$ $(Tj = -40^{\circ}\text{C} \sim +150^{\circ}\text{C})$ | -100 | 0    | 100  | ppm/°C | 1        |
|                        | Tcvref               | $V_{REF} = 0.5 \text{ V},$ $Ta = -40^{\circ}\text{C} \sim +125^{\circ}\text{C}$ $(Tj = -40^{\circ}\text{C} \sim +150^{\circ}\text{C})$                                  | -150 | 0    | 150  | ppm/°C | 1        |
| 基准电压源电流                | I <sub>REF_SOC</sub> | V <sub>REF</sub> = V <sub>SS</sub>                                                                                                                                      | 0.30 | 0.36 | 0.50 | mA     | 4        |
| 基准电压吸收电流               | I <sub>REF_SNK</sub> | $V_{REF} = V_{DD}$                                                                                                                                                      | 10.0 | 12.0 | 14.0 | mA     | 4        |
| 基准电压输出电阻               | R <sub>REF</sub>     | $I_{REF}$ = ±12.5 $\mu$ A,<br>Ta = -40°C ~ +125°C<br>(T <sub>i</sub> = -40°C ~ +150°C)                                                                                  | 160  | 200  | 280  | Ω      | 5        |
| 基准电压输出端子负载电阻           | R <sub>LREF</sub>    | 连接于VREF端子- VSS端子之间,<br>Ta = -40°C ~ +125°C<br>(T <sub>i</sub> = -40°C ~ +150°C)                                                                                         | 200  | -    | -    | kΩ     | -        |
| 基准电压输出端子负载电容           | C <sub>LREF</sub>    | 连接于VREF端子- VSS端子之间,<br>Ta = -40°C ~ +125°C<br>(T <sub>j</sub> = -40°C ~ +150°C)                                                                                         | -    | 47   | -    | nF     | _        |
| 基准电压输入模式               |                      |                                                                                                                                                                         |      |      |      |        |          |
| 基准电压输入                 | $V_{REFIN}$          | -                                                                                                                                                                       | 0.50 | -    | 2.65 | V      | 5        |
| 基准电压输入泄漏电流             | I <sub>IN_REF</sub>  | V <sub>REF</sub> = 0 V ~ 2.65 V                                                                                                                                         |      | 0.1  |      | μA     |          |

<sup>\*1.</sup> IC的功能设定和剪切调整为出厂时的默认设定。

<sup>\*2.</sup> 请参阅 "■ 工作说明" 的 "2. 10 基准电压温度漂移"

### 2. 串行通信工作

### 2.1 端子电容

#### 表10

(除特殊注明以外: Ta = +25°C, VDD = 5.0 V, Vss = 0 V)

| 项目          | 符号                  | 条件 | Min. | Тур. | Max. | 单位 |
|-------------|---------------------|----|------|------|------|----|
| SCL端子输入电容   | C <sub>IN_SCL</sub> | -  | -    | 1    | -    | pF |
| SDA端子输入输出电容 | CI/O_SDA            | -  | -    | 1    | -    | pF |

### 2.2 存储器特性

#### 表11

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

| 项目        | 符号 | 条件                       |                         | Min. | Тур. | Max. | 单位      |
|-----------|----|--------------------------|-------------------------|------|------|------|---------|
| 重写次数      | Nw | -                        |                         | 1000 | -    | ı    | 次 / 字*1 |
|           | -  | 365天, 24小时* <sup>2</sup> | T <sub>j</sub> = +25°C  | 15   | ı    | ı    | 年       |
| ** 据42 左期 |    |                          | T <sub>j</sub> = +125°C | 10   | ı    | ı    | 年       |
| 数据保存期     |    |                          | $T_j = +150^{\circ}C$   | 3    | -    | •    | 年       |
|           |    |                          | T <sub>j</sub> = +175°C | 1    | -    | -    | 年       |

<sup>\*1.</sup> 每个地址 (字:8位)

#### 2.3 DC电气特性

### 表12

(除特殊注明以外: Ta = +25°C, VDD = 5.0 V, Vss = 0 V)

| 项目      | 符号                  | 条件                                        | Min.                  | Тур. | Max.                  | 单位 |
|---------|---------------------|-------------------------------------------|-----------------------|------|-----------------------|----|
| 高电位输入电压 | VIH_SCL,<br>VIH_SDA | SCL端子*1, SDA端子                            | 0.7 × V <sub>DD</sub> | -    | V <sub>DD</sub> + 0.3 | V  |
| 低电位输入电压 | VIL_SCL,            | SCL端子, SDA端子                              | -0.3                  | -    | 0.3 × V <sub>DD</sub> | V  |
|         | I <sub>IH_SCL</sub> | SCL端子, V <sub>SCL</sub> = V <sub>DD</sub> | -                     | 0.1  | 1.0                   | μΑ |
| 输入泄漏电流  | I <sub>IL_SCL</sub> | SCL端子, V <sub>SCL</sub> = V <sub>SS</sub> | -                     | 0.1  | 1.0                   | μA |
|         | I <sub>IH_SDA</sub> | SDA端子, V <sub>SDA</sub> = V <sub>DD</sub> | -                     | 0.1  | 1.0                   | μA |
| 上拉电阻*2  | R <sub>PU_SDA</sub> | SDA端子                                     | 320                   | 380  | 460                   | Ω  |
| 低电位输出电流 | I <sub>OL_SDA</sub> | SDA端子, V <sub>SDA</sub> = 0.6 V           | 8                     | 12   | -                     | mA |

<sup>\*1.</sup> SCL端子的电压也用于退出串行通信工作模式。

有关详情,请参阅 "■ 工作说明" 的"1. 2. 2 退出串行通信工作模式"。

因此,VDD端子消耗的电流量,除了线性霍尔效应传感器工作模式的消耗电流 (IDD) 之外, $\frac{VDD}{R_{PU\_SDA}}$  [A] 的电流也会增加,务请注意。

<sup>\*2.</sup> 和温度循环相同,随着时间发生温度变化时,IC为高温时间的累计值。

<sup>\*2.</sup> 串行通信工作模式时, SDA端子变为 "L" 的期间, 上拉电阻会流经电流。

### 2.4 AC电气特性

## 2. 4. 1 输出负载 = 100 pF (SCL时钟频率 ≤ 400 kHz)

### 表13 测量条件

| 输入脉冲电压        | $0.2 \times V_{DD} \sim 0.8 \times V_{DD}$ |
|---------------|--------------------------------------------|
| 输入脉冲上升 / 下降时间 | 20 ns以下                                    |
| 输出判定电压        | $0.3 \times V_{DD} \sim 0.7 \times V_{DD}$ |
| 输出负载          | 100 pF                                     |

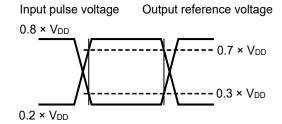



图3 AC测量输入、输出波形

表14

(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)

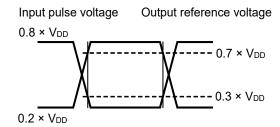
| 项目            | 符号                  | Min. | Тур. | Max. | 单位  |
|---------------|---------------------|------|------|------|-----|
| SCL时钟频率       | fscL                | -    | -    | 400  | kHz |
| SCL时钟 "L" 时间  | t <sub>LOW</sub>    | 1300 | 1    | -    | ns  |
| SCL时钟 "H" 时间  | thigh               | 600  | 1    | -    | ns  |
| SCL、SDA上升时间*1 | t <sub>R</sub>      | -    | 1    | 300  | ns  |
| SCL、SDA下降时间*1 | t <sub>F</sub>      | -    | 1    | 300  | ns  |
| 数据输入设置时间      | t <sub>SU.DAT</sub> | 100  | 1    | -    | ns  |
| 数据输入保持时间      | thd.dat             | 0    | 1    | -    | ns  |
| 数据输出延迟时间      | taa                 | 100  | 1    | 1100 | ns  |
| 数据输出保持时间      | t <sub>DH</sub>     | 50   | 1    | -    | ns  |
| 开始状态设置时间      | tsu.sta             | 600  | 1    | -    | ns  |
| 开始状态保持时间      | thd.sta             | 600  | 1    | -    | ns  |
| 停止状态设置时间      | t <sub>SU.STO</sub> | 600  | -    | -    | ns  |
| 总线释放时间        | t <sub>BUF</sub>    | 13   | -    | -    | ms  |
| 噪声抑制时间        | tı                  | -    | 50   | -    | ns  |

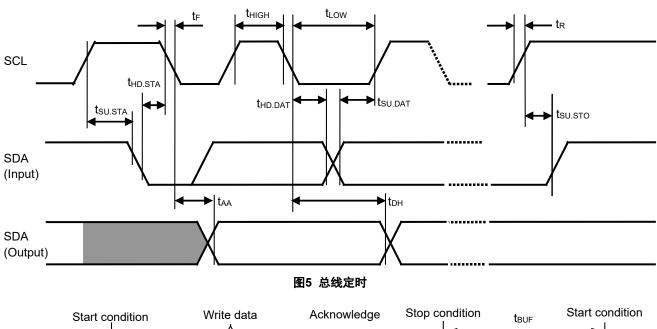
<sup>\*1.</sup> 此项目为设计规格保证。

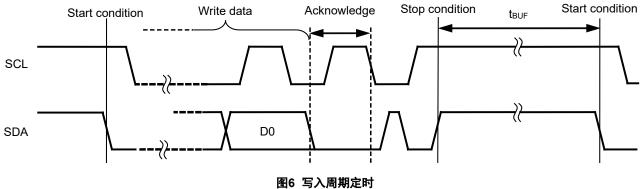
## 2. 4. 2 输出负载 = 4.7 nF (SCL时钟频率 ≤ 100 kHz)

### 表15 测量条件

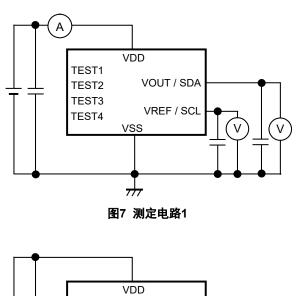
| 输入脉冲电压        | $0.2 \times V_{DD} \sim 0.8 \times V_{DD}$ |
|---------------|--------------------------------------------|
| 输入脉冲上升 / 下降时间 | 1.0 µs以下                                   |
| 输出判定电压        | $0.3 \times V_{DD} \sim 0.7 \times V_{DD}$ |
| 输出负载          | 4.7 nF                                     |

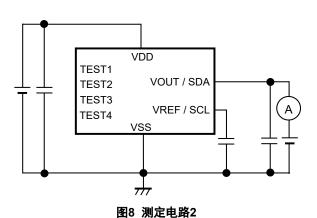


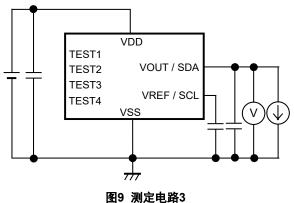


图4 AC测量输入、输出波形

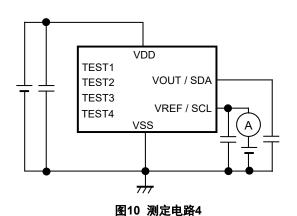

### 表16

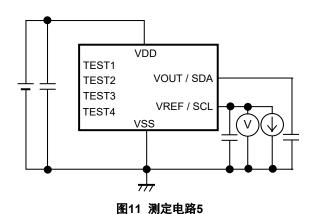
(除特殊注明以外: Ta = +25°C, V<sub>DD</sub> = 5.0 V, V<sub>SS</sub> = 0 V)


| 项目            | 符号                  | Min. | Тур. | Max. | 单位  |
|---------------|---------------------|------|------|------|-----|
| SCL时钟频率       | fscL                | -    | -    | 100  | kHz |
| SCL时钟 "L" 时间  | t <sub>LOW</sub>    | 5.7  | -    | Ī    | μs  |
| SCL时钟 "H" 时间  | t <sub>HIGH</sub>   | 2.3  | 1    | İ    | μs  |
| SCL、SDA上升时间*1 | t <sub>R</sub>      | -    | 1    | 1.0  | μs  |
| SCL、SDA下降时间*1 | t <sub>F</sub>      | -    | 1    | 1.0  | μs  |
| 数据输入设置时间      | tsu.dat             | 0.25 | 1    | İ    | μs  |
| 数据输入保持时间      | t <sub>HD.DAT</sub> | 0    | 1    | İ    | μs  |
| 数据输出延迟时间      | t <sub>AA</sub>     | 0.1  | 1    | 5.45 | μs  |
| 数据输出保持时间      | t <sub>DH</sub>     | 0.05 | 1    | İ    | μs  |
| 开始状态设置时间      | tsu.sta             | 4.0  | 1    | İ    | μs  |
| 开始状态保持时间      | t <sub>HD.STA</sub> | 4.0  | 1    | İ    | μs  |
| 停止状态设置时间      | tsu.sto             | 4.0  | -    | Ī    | μs  |
| 总线释放时间        | t <sub>BUF</sub>    | 13   | -    | Ī    | ms  |
| 噪声抑制时间        | tı                  | -    | 50   | -    | ns  |


<sup>\*1.</sup> 此项目为设计规格保证。





## ■ 测定电路











## ■ 标准电路

## 1. 基准电压输出模式

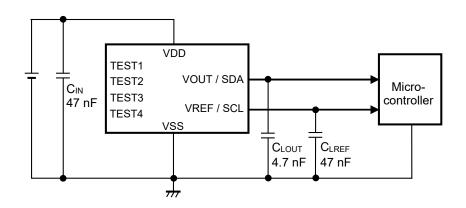



图12 标准电路 (基准电压输出模式)

### 2. 基准电压输入模式

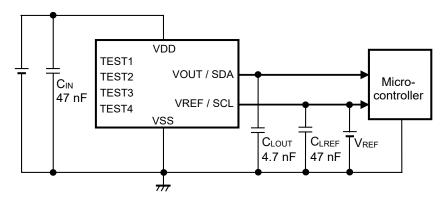



图13 标准电路 (基准电压输入模式)

注意 上述连接图以及参数仅供参考,并不作为保证电路工作的依据。请在进行充分的实测基础上,再设定实际的应用电路的参数。

### ■ 各端子的功能说明

### 1. VDD端子

VDD端子是施加正电源电压的端子。为了稳定工作,请在VDD端子 - VSS端子之间连接47 nF以上的旁路电容。

#### 2. VREF / SCL端子

VREF / SCL端子兼作基准电压输入 / 输出端子和串行时钟输入端子。在线性霍尔效应传感器工作模式时,VREF端子发挥作用,在串行通信工作模式时,SCL端子发挥作用。

线性霍尔效应传感器工作模式时,输出或输入基准电压。通过内置的非易失性存储器,可以切换基准电压输出模式和基准电压输入模式。在基准电压输出模式工作时,为了稳定工作,请在VREF端子 - VSS端子之间连接47 nF的电容器 (CLREF)。

串行通信工作模式时,从主装置输入串行时钟,在内置的非易失性存储器中进行写入/读出。由于是在SCL时钟输入信号的上升边缘和下降边缘来进行信号处理,因此请充分注意上升时间和下降时间,遵守技术规格。

### 3. VOUT / SDA端子

VOUT / SDA端子兼作输出端子和串行数据输入 / 输出端子。在线性霍尔效应传感器工作模式时,VOUT端子发挥作用,在串行通信工作模式时,SDA端子发挥作用。

线性霍尔效应传感器工作模式时,该端子输出与施加给IC的磁速密度相应的电压。为了稳定工作,请在VOUT端子 -VSS 端子之间连接4.7 nF的电容器 (CLOUT)。

串行通信工作模式时,双向进行串行数据传输,在内置的非易失性存储器进行写入/读出。由信号输入端子和N沟道开路漏极输出端子构成,内置有向Vpp电位上拉的电阻。

## ■ 工作说明

## 1. 工作模式

本IC有线性霍尔效应传感器工作模式和串行通信工作模式两种工作模式。

线性霍尔效应传感器工作模式是以基准电压输出 (V<sub>REF</sub>) 为基准,输出与磁速密度成比例的模拟信号电压。这是用于正常使用本IC的工作模式。

串行通信动作模式是通过2线串行接口将设置写入内置的非易失性存储器中,可以进行IC的功能切换和剪切调整。这是在使用本IC之前进行剪切调整的工作模式。

各个工作模式的进入条件如下所示。

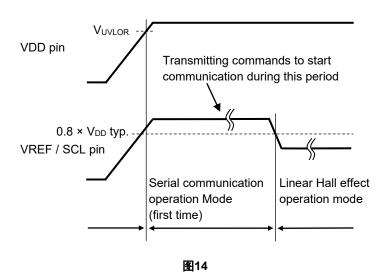
#### 1.1 进入线性霍尔效应传感器工作模式

在电源电压上升时,如果VREF / SCL端子为开路,或在VREF / SCL端子 - VSS端子之间连接负载,就进入线性霍尔效应传感器工作模式。

在电源电压上升后,本IC会复位内部状态。此时,VOUT / SDA端子和VREF / SCL端子为高阻抗输出。当电源电压达到UVLO解除电压 (Vuvlor) 时,从内置的非易失性存储器中读出剪切代码。随后,电路开始工作,VOUT / SDA端子电压和VREF / SCL端子电压上升,进入线性霍尔传感器工作模式。

### 1.2 进入和退出串行通信工作模式

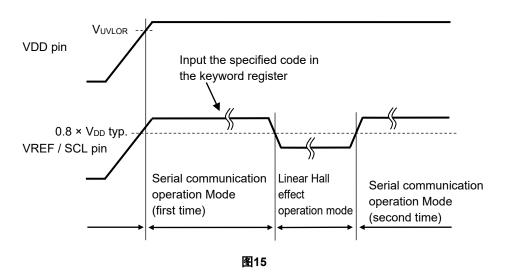
### 1.2.1 进入串行通信工作模式


**图14**表示进入串行通信工作模式的方法。在电源电压上升的同时,对VREF/SCL端子施加电源电压,就进入串行通信动作模式。

在电源电压上升后,本IC会复位内部状态。此时,VOUT / SDA端子和VREF / SCL端子为高阻抗输出。当电源电压达到UVLO解除电压 (VUVLOR) 时,只要VREF / SCL端子电压高于0.8 × VDD typ.,就能满足进入串行通信工作模式的条件。从内置非易失性存储器读出剪切代码后,VOUT / SDA端子和VREF / SCL端子保持高阻抗输出,进入串行通信工作模式。进入串行通信工作模式后,根据串行通信协议发送通信开始命令后,可以进行内置非易失性存储器的写入及读出工作。

### 1.2.2 退出串行通信工作模式

图14表示退出串行通信工作模式的方法。


进入串行通信工作模式后,在未输入开始状态情况下,VREF / SCL端子的电压低于 $0.8 \times V_{DD}$  typ.时,就退出串行通信工作模式进入线性霍尔效应传感器工作模式。为了再次进入串行通信工作模式,需要重新启动电源电压。



#### 1.2.3 输入关键字时再次进入串行通信工作模式

图15表示输入关键字时再次进入串行通信工作模式的方法。

在首次串行通信工作模式时,通过在关键字寄存器中写入指定代码,不重新启动电源电压,就可以再次进入串行通信工作模式。通过使VREF / SCL端子的电压高于0.8 × V<sub>DD</sub> typ.,可以再次进入串行通信工作模式。

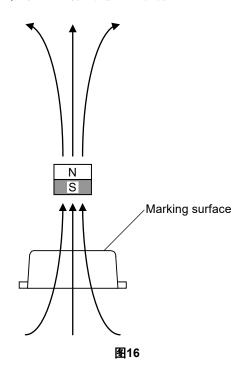


### 1.2.4 超时功能

本IC备有从串行通信工作模式开始的超时功能。

在串行通信工作模式时,输入了开始状态后,如果VREF / SCL端子的电压在0.8 × V<sub>DD</sub> typ.以下,并经过1 ms typ.以上的时间后,就退出串行通信工作模式,转移到线性霍尔效应传感器工作模式。

在写入关键字寄存器前或写入中发生上述超时时,为了再次进入串行通信工作模式,需要重新启动电源电压。


### 2. 线性霍尔效应传感器工作

#### 2. 1 施加磁束方向

本IC可针对标记面输出应对垂直方向磁束密度的电压。

### 图16表示施加磁束的方向。

从IC的下面向上面贯穿磁力线时,即从上面将S极靠近时为+方向。



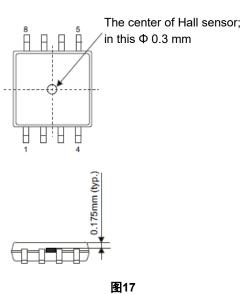

### 2.2 霍尔传感器位置

图17表示霍尔传感器的位置。

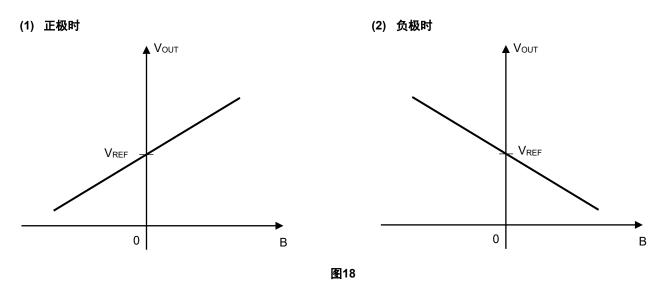
霍尔传感器处于封装中央的标有圆形标记的范围内。

另外, 还标示出从封装的标记面到芯片表面的距离 (typ.值)。

Top View



#### 2.3 输出电压特性

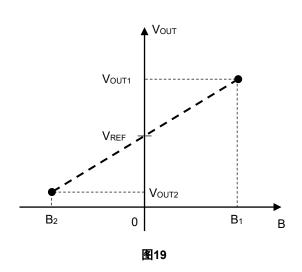

本IC以基准电压输出 (VREF) 为基准,输出与磁速密度成比例的模拟信号电压。

模拟信号电压是由磁速密度 (B) 和磁性灵敏度 (S) 而决定的,输出失调电压 (V<sub>OFF</sub>) 为0 mV时,可用以下公式表示。下式中的±符号是根据输出信号极性而变化。

 $V_{OUT}[V] = \pm(B \times S) + V_{REF}$ 

#### 图18表示输出电压特性的说明图。

磁速密度 (B) = 0时, $V_{OUT} = V_{REF}$ 。当输出信号极性为正极时,如果将磁速密度 (B) 向+方向增加,则 $V_{OUT}$ 将会以 $V_{REF}$ 为基准增加。当输出信号极性为负极时,如果将磁速密度 (B) 向+方向增加,则 $V_{OUT}$ 将会以 $V_{REF}$ 为基准减少。输出信号极性可以通过内置的非易失性存储器切换设置。




### 2.4 磁性灵敏度

**图19**表示磁束密度 (B) 和输出电压 ( $V_{OUT}$ ) 的关系。磁性灵敏度 (S) 是输出电压 ( $V_{OUT}$ ) 相对于磁速密度 (B) 的斜率。根据磁速密度 =  $B_1$ 时的输出电压= $V_{OUT_1}$ 和磁速密度 =  $B_2$ 时的输出电压= $V_{OUT_2}$ ,通过以下公式计算。

$$S[V/T] = (V_{OUT1} - V_{OUT2}) \div (B_1 - B_2)$$

磁性灵敏度 (S) 可以通过内置的非易失性存储器进行剪切调整。



备注 正极时

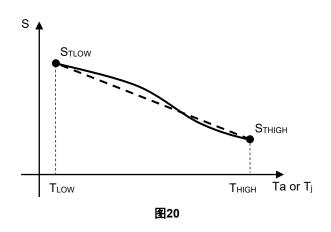
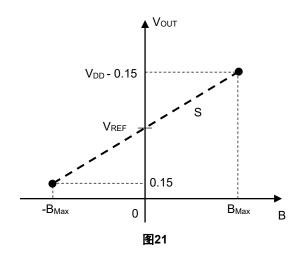

#### 2.5 磁性灵敏度温度漂移

图20表示磁性灵敏度对温度的依赖性。

磁性灵敏度温度漂移 (TCS) 是连接低温 ( $T_{LOW}$ , Ta = -40°C) 磁性灵敏度 ( $S_{TLOW}$ ) 和高温 ( $T_{HIGH}$ , Ta = +125°C或 $T_{j} = +150$ °C) 磁性灵敏度 ( $S_{THIGH}$ ) 两点的直线斜率。Ta = +25°C的磁性灵敏度为 $S_{T25}$ 时,通过以下公式计算。

TCS [ppm/°C] = (S<sub>THIGH</sub> - S<sub>TLOW</sub>) ÷ S<sub>T25</sub> ÷ (T<sub>HIGH</sub> - T<sub>LOW</sub>) ×  $10^6$ 

TCS可以通过内置的非易失性存储器进行剪切调整。



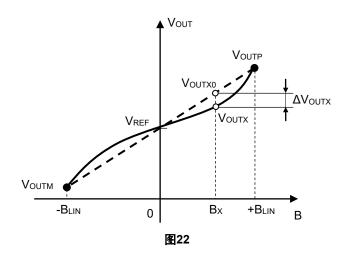

### 2.6 施加最大磁束密度

图21表示磁束密度 (B) 和输出电压 (Vout) 的关系。

施加最大磁束密度 ( $B_{MAX}$ ) 是指在设定的磁性灵敏度 (S) 下,输出电压 ( $V_{OUT}$ ) 达到 $V_{DD}$  - 0.15 V或0.15 V的最小的磁束密度。输出失调电压 ( $V_{OFF}$ ) 为0 mV时,通过以下公式计算。

 $B_{MAX}$  [mT] = min. { (V<sub>DD</sub> - 0.15 - V<sub>REF</sub>) ÷ S, (V<sub>REF</sub> - 0.15) ÷ S }




备注 正极时

#### 2.7 磁性灵敏度线性误差

图22表示磁性灵敏度线性误差 (LIN) 的说明图。

LIN是连接磁束密度 =  $+B_{LIN}$ 时的输出电压 ( $V_{OUTP}$ ) 和磁束密度 =  $-B_{LIN}$ 时的输出电压 ( $V_{OUTM}$ ) 的直线与实际的输出电压 的误差。输出失调电压 ( $V_{OFF}$ ) 为0 mV时,通过以下公式计算。

LIN [%] =  $\Delta V_{OUTX} \div (V_{OUTP} - V_{OUTM}) \times 100$ 



备注 正极时

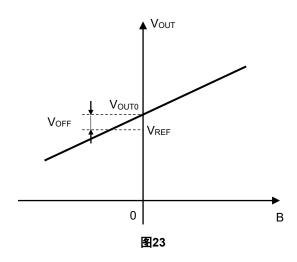

### 2.8 输出失调电压

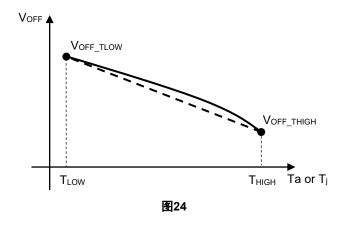
图23表示输出失调电压 (VOFF) 的说明图。

磁束密度 (B) = 0 mT时的输出电压为 $V_{OUT0}$ 。理想的情况是 $V_{OUT0}$ 与基准电压输出 ( $V_{REF}$ ) 一致,但实际上会产生电压误差。将此电压误差作为输出失调电压 ( $V_{OFF}$ )。通过以下公式计算。

 $V_{OFF} = V_{OUT0} - V_{REF}$ 

输出失调电压 (VOFF) 可通过内置的非易失性存储器进行剪切调整。



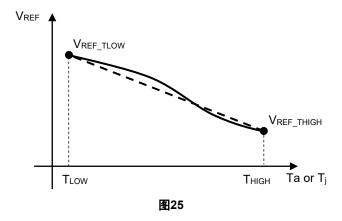

备注 正极时

#### 2.9 输出失调电压温度漂移

图24表示输出失调电压温度漂移对温度的依赖性。

输出失调电压温度漂移 ( $T_{CVOFF}$ ) 是连接低温 ( $T_{LOW}$ ,  $T_{a}$  = -40°C) 输出失调电压 ( $V_{OFF\_TLOW}$ ) 和高温 ( $T_{HIGH}$ ,  $T_{a}$  = +125°C 或 $T_{j}$  = +150°C) 输出失调电压 ( $V_{OFF\_THIGH}$ ) 两点的直线斜率。通过以下公式计算。

 $T_{CVOFF}[mV/^{\circ}C] = (V_{OFF\_THIGH} - V_{OFF\_TLOW}) \div (T_{HIGH} - T_{LOW})$ 




### 2.10 基准电压温度漂移

图25表示基准电压对温度的依赖性。

基准电压温度漂移 (Tcvref) 是连接低温 (Tlow, Ta = -40°C) 基准电压 (Vref\_Tlow) 和高温 (Thigh, Ta = +125°C或Tj = +150°C) 基准电压 (Vref\_Thigh) 两点的直线斜率。Ta = +25°C的基准电压设为Vref\_T25时,通过以下公式计算。

Tours [ppm/°C] = (Vref\_tmax - Vref\_tlow) ÷ Vref\_t25 ÷ (Thigh - Tlow) × 106



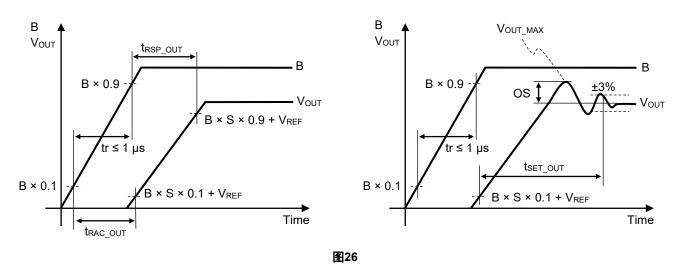

#### 2.11 输出响应

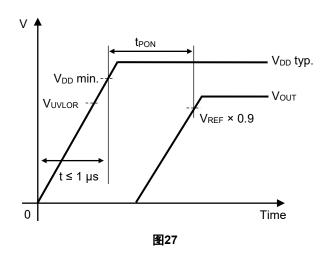
图26表示在1 µs以内将磁束密度 (B) 从10%提升至90%时,输出电压 (Vout) 的响应波形。

施加磁束密度 (B),在经过了充足的时间后的稳定状态下,输出电压 ( $V_{OUT}$ ) 为B×S+ $V_{REF}$ 。在此,将磁束密度达到B×0.1后,到输出电压达到B×S×0.1+ $V_{REF}$ 为止的时间作为输出反应时间 ( $t_{RAC_OUT}$ )。将磁束密度达到B×0.9后,到输出电压达到B×S×0.9+ $V_{REF}$ 为止的时间作为输出响应时间 ( $t_{RSP_OUT}$ )。将输出电压达到B×S×0.1+ $v_{REF}$ 后,在B×S×(1±0.03)+ $v_{REF}$ 以内静定为止的时间作为输出稳定时间 ( $t_{RET_OUT}$ )。

输出电压启动时上升至稳定状态值以上的比率称为输出过冲 (OS)。将启动时的最大输出电压作为V<sub>OUT\_MAX</sub>,通过以下公式计算OS。

OS [%] = 
$$\{V_{OUT MAX} - (B \times S + V_{REF})\} \div (B \times S) \times 100$$




## 2.12 启动时间

24

图27表示电源电压上升时输出电压 (Vout) 的上升波形。

电源电压上升后,本IC将复位内部状态。此时,VOUT端子和VREF端子为高阻抗输出。此后,当电源电压达到UVLO解除电压 (V<sub>UVLOR</sub>) 时,从内置的非易失性存储器中读出剪切代码,开始电路工作。电路工作开始后,VOUT端子电压和VREF端子电压开始上升。

在基准电压输出模式下,将电源电压达到V<sub>DD</sub> min.后,到输出电压达到V<sub>REF</sub> × 0.9为止的时间作为启动时间 (t<sub>PON</sub>)。



#### 3. 保护功能

### 3.1 电源电压下降检测电路

本IC内置了低电源电压检测电路 (UVLO)。在线性霍尔效应传感器工作期间,电源电压下降而低于UVLO检测电压 (VuvLop) 时,如果低于1 ms typ.且电源电压恢复到UVLO解除电压 (VuvLor) 以上,则IC的工作不会发生变化。但是,在电源电压低于VuvLop的状态经过1 ms typ.以上后,IC会停止工作,VOUT端子变为高阻抗输出,VREF端子变为Vss (通过10 kΩ电阻下拉至Vss)。此后,当电源电压恢复到VuvLor以上,经过与电源启动时相同的工作,恢复到通常工作状态。但是,当电源电压低于电源切断阈值电压 (Vpoff) 后,与经过的时间无关,IC将停止工作,VOUT端子变为高阻抗输出,VREF端子变为Vss (通过10 kΩ电阻下拉至Vss)。无论在基准电压输出模式,还在基准电压输入模式,都是上述工作 (请参阅表17、表18)。

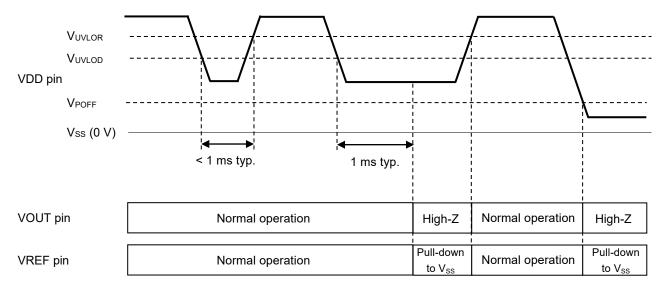



图28 电源电压下降检测时

#### 3.2 热敏关闭电路

本IC为了限制发热,内置了热敏关闭电路。在线性霍尔效应传感器工作期间,当结点温度上升到170°C typ.时,热敏关闭电路变为检测状态,停止线性霍尔效应传感器工作。当结点温度下降到155°C typ.时,热敏关闭电路变为解除状态,线性霍尔效应传感器工作重新开始。在检测到热敏关闭电路时,需要减少从VOUT端子或VREF端子输出的电流或降低环境温度,以提高安装有IC的基板的散热性。如果热敏关闭电路持续为检测状态,有可能造成产品劣化等物理性损伤,务请注意。无论在基准电压输出模式,还在基准电压输入模式,都是上述工作(请参阅**表17、表18**)。

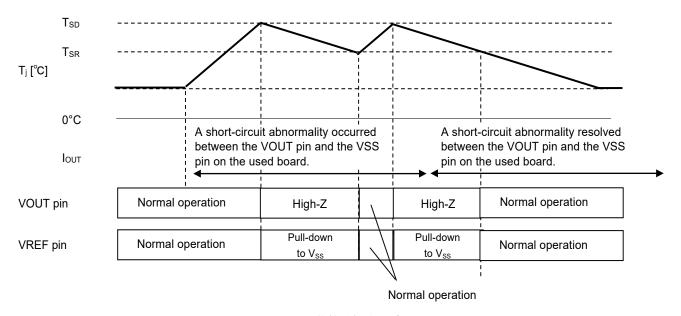



图29 热敏关闭检测时

表17 基准电压输出模式

| 端子         | 正常工作时 | 电源电压下降检测时          | 热敏关闭检测时            | 串行通信工作时                          |
|------------|-------|--------------------|--------------------|----------------------------------|
| VOUT / SDA | 电压输出  | High-Z             | High-Z             | V <sub>DD</sub> (上拉380 Ω typ.)*1 |
| VREF / SCL | 电压输出  | Vss (下拉10 kΩ typ.) | Vss (下拉10 kΩ typ.) | High-Z*1                         |

表18 基准电压输入模式

| 端子         | 正常工作时  | 电源电压下降检测时          | 热敏关闭检测时            | 串行通信工作时                          |
|------------|--------|--------------------|--------------------|----------------------------------|
| VOUT / SDA | 电压输出   | High-Z             | High-Z             | V <sub>DD</sub> (上拉380 Ω typ.)*1 |
| VREF / SCL | High-Z | Vss (下拉10 kΩ typ.) | Vss (下拉10 kΩ typ.) | High-Z*1                         |

<sup>\*1.</sup> 串行通信工作时,如果在低电源电压检测 (UVLO) 状态或热敏关闭检测状态,VOUT / SDA端子维持V<sub>DD</sub> (上拉380 Ω typ.),VREF / SCL端子维持高阻抗。

注意 如果应用电路的散热性能不好,则无法限制自身发热,可能导致应用电路破损。请在实际的应用电路上进行充分的实 测验证,确认没有发生问题。

### 4. 串行通信工作

本IC在电源启动时进入串行通信工作模式后,通过2线串行接口在内置的非易失性存储器中编程,可以进行IC的功能切换和剪切调整。

### 4.1 开始状态

SCL端子为 "H" 时, SDA端子从 "H" 变为 "L" 时即为开始状态。所有通信工作都从开始状态开始。

### 4.2 停止状态

SCL端子为 "H" 时,SDA端子从 "L" 变为 "H" 时即为停止状态。 在读出时序的时候,若接收了停止状态,则读出工作被中断,结束通信。 在写入时序的时候,若接收了停止状态,则结束写入数据的存取。

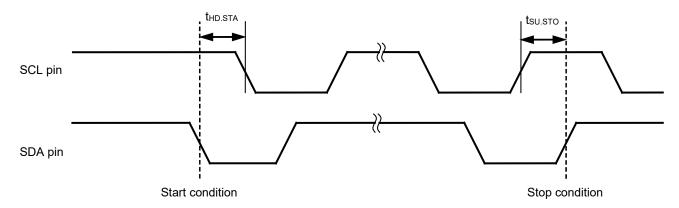
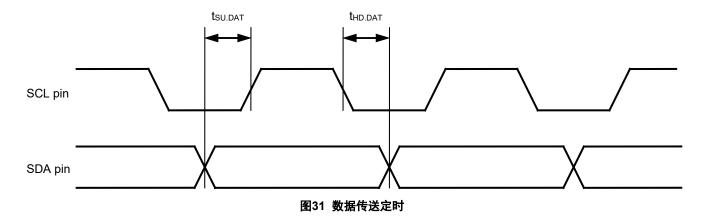




图30 开始状态 / 结束状态

## 4.3 数据传送

在SCL端子为 "L" 的期间,通过改变SDA端子,进行数据传送。 在SCL端子为 "H" 的期间,如果SDA端子发生变化,就会识别开始状态或是停止状态。



#### 4.4 确认

数据传送为8位连续传送。随后,在第9个的时钟周期期间,接收数据的系统总线上的从属装置把SDA端子设置为 "L",并反馈回数据已接受的确认信号。

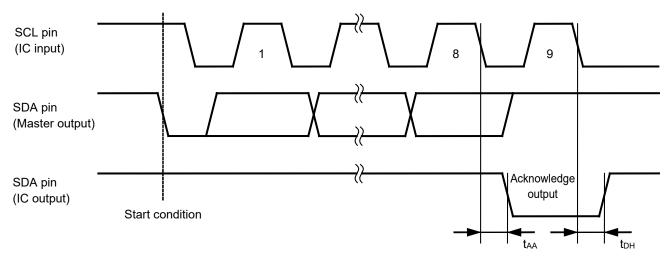



图32 确认输出定时

### 4.5 装置寻址

为了进行通信,系统上的主装置使从属装置产生开始状态。随后,主装置向SDA总线上传送7位长的装置地址和1位长的读出 / 写入指令码。

装置地址的上位7位被称为装置码,并固定为 "1100 000 b"。

装置地址的下位1位被称为读出 / 写入指令码, "0 b" 时为写入工作, "1 b" 时为读出工作。

如果在从总线发出的装置地址一致的情况下,本IC在第9个的时钟周期期间,反馈回确认信号。

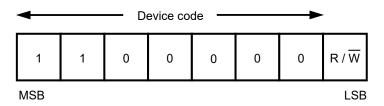



图33 装置地址

#### 4.6 写入工作

#### 4.6.1 字节写入

本IC在开始状态之后,通过接收7位长的装置地址和读出/写入指令码 "0",产生确认信号。

随后,接收8位长的指针数据,产生确认信号。继而,接收8位的写入数据,在确认信号产生之后,通过接收停止 状态信号,开始指针指定的地址的重写工作。

在重写工作中,全部的工作都被禁止,不反馈回确认信号。

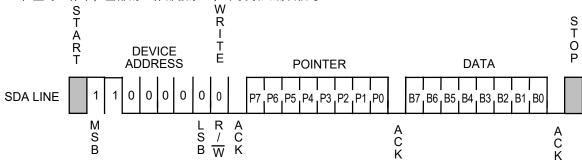



图34 字节写入

#### 4.6.2 多字节写入

基本的数据传送步骤与字节写入相同,通过连续的接收8位的写入数据进行多字节写入。

本IC在开始状态之后,一接收到7位长的装置地址和读出/写入指令码 "0",就产生确认信号。

随后,接收8位长的指定数据,产生确认信号。继而接收8位的写入数据,在确认信号产生之后,继续接收8位写入数据,产生确认信号。之后,重复进行连续接收8位写入数据工作和确认信号产生的工作。

本IC内部的地址计数器的内容,每次接收8位的写入数据后,从指针指定的地址开始一个接一个增量。如果指针指定的地址为0x00-0x1E,一个接一个增量,到0x1E时返回0x00。

最后,通过接收停止状态信号,从指针指定的地址开始进行写入数据的重写工作开始。

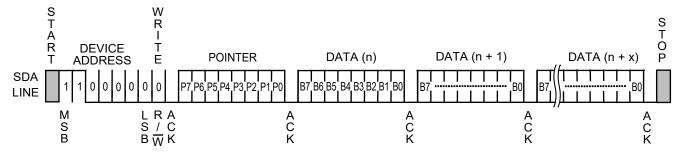



图35 多字节写入

### 4.7 读出工作

### 4. 7. 1 现行地址读出

本IC可以在写入、读出工作的同时,保持指针最后指定的地址。只要不中断对本IC的命令传送、电源电压不小于最低工作电压,地址就可以一直被保持。因此,主装置只要识别出本IC的地址数据,就可以不指定地址,通过现在的地址数据而进行读出工作。这就称为现行地址读出。

以下说明本IC内部的地址计数器的内容为n地址号的情况。

本IC在开始状态之后,接收7位长的装置地址和读出/写入指令码的 "1",而产生确认信号。继而,跟SCL时钟同步后,本IC输出第n个地址的8位长的数据。随后,地址计数器被增量,地址计数器变为第n + 1个地址。之后,主装置不输出确认而送出停止状态来结束读出工作。

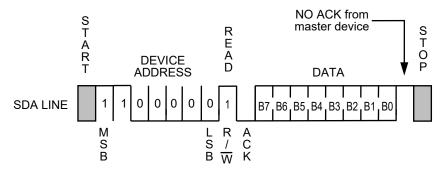



图36 现行地址读出

### 4.7.2 随机读出

随机读出是在读出任意的地址数据的情况下使用的手法。

首先,为了把地址载入本IC的地址计数器,要根据以下的要领进行摸拟写入。

本IC在开始状态之后,接收到7位长的装置地址和读出/写入指令码的 "0",就会产生确认信号。随后,接收8位长的指定字节,产生确认信号。在到此为止的工作中,本IC的地址计数器中会载入地址。

在写入工作的情况下,此后会接收写入数据,而在摸拟写入的情况下,不进行数据的接收。

通过摸拟写入,本IC的地址计数器中会载入地址,所以之后的主装置只需重新送出开始状态,使之进行与现行地址读出相同的工作,从而可以进行从任意的地址开始的数据的读出。也就是说,本IC在开始状态之后,一接收到7位长的装置地址和读出 / 写入指令码的 "1",就产生确认信号。随后,从本IC输出与SCL时钟同步的8位长的数据。继而,主装置不输出确认信号,通过送出停止状态,来结束读出工作。

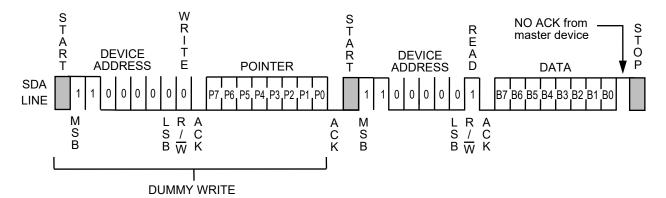



图37 随机读出

#### 4.7.3 顺序读出

无论是在现行地址读出还是在随机读出,本IC在开始状态之后,一接收到7位长的装置地址和读出/写入指令码的"1",就产生确认信号。

随后,与SCL时钟同步后从本IC输出8位长的数据时,本IC的地址计数器会自动地增量。

继而,主装置一送出确认,下一个地址的数据就会被输出。通过主装置送出确认,本IC的地址计数器依次被增量,可以连续读取数据。指针指定的地址为0x00-0x1E时,进行增量,到达0x1E时返回0x00。指针指定的地址为0x40-0x5E时,进行增量,到达0x5E时返回0x40。

为了结束读出工作,主装置不输出确认信号,通过送出停止状态来进行。

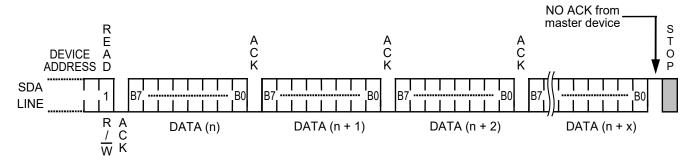
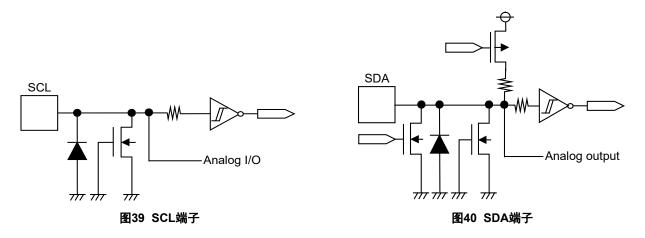



图38 顺序读出

## ■ 使用方法


### 1. SDA端子和SCL端子的上拉

SDA端子内置有上拉电阻,因此不需要上拉。

SCL端子没有内置上拉电阻。在主装置的N沟道开路漏极输出端子处连接了本IC的SCL端子的情况下,必须连接上拉电阻。另外,在主装置的三态输出端子处连接了本IC的SCL端子的情况下,要使在SCL端子处不输入高阻抗状态,也请连接同样的上拉电阻。因电压下降而使主装置复位时,可以防止因三态端子的不稳定输出 (高阻抗) 而导致的本IC的误工作。在线性霍尔效应传感器工作模式时,请断开此上拉电阻。

### 2. SDA端子和SCL端子的等效电路

本IC的SDA端子和SCL端子的等效电路如下所示。



### 3. 确认检查

本IC具备确认检查功能,该功能作为用于避免通信错误的握手功能,可检测出主装置与本IC之间的数据通信途中的不良通信。因此,作为防止误工作的手段是很有效的,推荐在主装置端执行确认检查。

### 4. SDA端子和SCL端子的噪声抑制时间

本IC为了抑制SDA端子和SCL端子的噪声而内置了低通滤波器电路,可除去50 ns typ.以下脉冲幅度的噪声。

### 5. 在输入写入数据过程中输入停止状态时的工作

本IC在写入数据输入过程中输入停止状态时,输入的数据未回复ACK,因此该数据无效。但是,在多字节写入的情况下,只要有1个地址以上的回复ACK的数据输入,则该数据输入部分有效。 详情请参阅**图41**。

由于在停止状态输入后立即执行写入工作,因此最多13 ms期间新的写入数据输入无效。

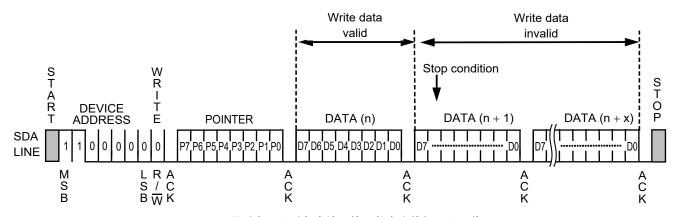



图41 通过在写入过程中输入停止状态来执行写入工作

### 6. 在输入写入数据过程中输入开始状态时的工作

本IC在写入数据输入过程中输入开始状态时,与写入数据输入过程中输入停止状态进行相同的工作。在这种情况下,将 被视为重新启动。

## ■ 寄存器说明

# 1. 寄存器映射

本IC的寄存器映射如**表19**所示。

表19 寄存器映射

| Int. Lat    |       |                       |    |    | Ž  | 数据 | [7:0] | 1   |    |    |
|-------------|-------|-----------------------|----|----|----|----|-------|-----|----|----|
| 地址          | R/W   | 内容                    | В7 | В6 | B5 |    | _     |     | B1 | В0 |
| 00 h ~ 08 h | R/W   | A:设备编号、制造年月日等的存储      |    |    |    | A  | 4     |     |    |    |
| 09 h ~ 0B h | R     | B:输出失调电压温度漂移调整用数据     |    |    |    |    |       |     |    |    |
| 0011 0211   | . ` ` | (输出电压特性:正极时)          |    |    |    | F  | 3     |     |    |    |
| 0C h ~ 0E h | R     | B:输出失调电压温度漂移调整用数据     |    |    |    |    |       |     |    |    |
| 0011 0211   | 11    | (输出电压特性 : 负极时)        |    |    |    |    |       |     |    |    |
| 0F h        | R     | C : 磁性灵敏度温度漂移调整进阶修正数据 |    |    |    | (  | )     |     |    |    |
| 10 h        | R/W   | D : 输出失调电压的调整         |    |    |    |    | )     |     |    |    |
| 11 h        | R/W   | E:磁性灵敏度的粗调整           | -  | -  | -  |    |       | Ε   |    |    |
| 12 h        | R/W   | E:磁性灵敏度的粗调整           | -  | -  | -  | -  | -     | •   | -  | Е  |
| 13 h        | R/W   | F:热敏关闭有/无的选择          | -  | -  | -  | -  | -     | -   | -  | F  |
| 14 h        | R/W   | G:磁性灵敏度的微调整           |    |    |    | (  | 3     |     |    |    |
| 45 6        | R/W   | H:输出电压的极性选择           |    |    |    |    |       |     |    |    |
| 15 h        | K/VV  | I:磁性灵敏度温度漂移的调整        | -  |    |    |    |       |     |    | Н  |
| 16 h        | D/\/  | J: 基准电压输出的选择          |    |    |    | -  | K     |     |    |    |
| 16 ft       | R/W   | K:基准电压输出模式/输入模式的选择    | -  | 1  | •  | 7  | ĸ     | •   | ,  | J  |
| 17 h        | R/W   | L:基准电压输出的微调整          | -  | -  |    |    | L     | _   |    |    |
| 40 h        | D/\/  | M:输出失调电压温度漂移的调整       |    | `  |    |    |       | N 4 |    |    |
| 19 h        | R/W   | D:輸出失调电压的调整           |    | )  | -  |    |       | M   |    |    |
| 4.4.1-      | R/W   | G:磁性灵敏度的微调整           |    |    |    |    |       |     | ,  | `  |
| 1A h        | K/VV  | N:频带宽度的选择             | 1  | N  | -  | -  | -     | -   |    | 3  |
| 1F h        | R/W   | O:写入保护有效 / 无效的选择      | -  | -  | -  | -  | -     | -   | -  | 0  |
| CF h        | W     | P: 关键字寄存器             |    |    |    | F  | )     |     |    |    |

备注 -: Don't care

### 2. 寄存器构成

### 2.1 关键字寄存器

通过在关键字寄存器中输入指定的代码来选择寄存器访问的有效 / 无效。

本IC在进入串行通信工作模式后,通过在关键字寄存器中写入 "1100 1101 b",就可以访问寄存器。

使用写入保护功能时,输入 "0101 1110 b" 代替上述关键字。关于写入保护,请参阅 "2.9 写入保护有效 / 无效 (WP)"。

#### 表20 关键字寄存器

| I | 地址   | R/W | B7 | B6 | B5 | B4 | В3  | B2 | B1 | B0 |
|---|------|-----|----|----|----|----|-----|----|----|----|
|   | CF h | W   |    |    |    |    | 寄存器 |    |    |    |

|    | CF h |    |    |    |    |    |    | 光键文字左竖                                 |  |  |  |  |  |
|----|------|----|----|----|----|----|----|----------------------------------------|--|--|--|--|--|
| В7 | В6   | B5 | B4 | В3 | B2 | B1 | В0 |                                        |  |  |  |  |  |
| 1  | 1    | 0  | 0  | 1  | 1  | 0  | 1  | 寄存器访问有效<br>(可以访问地址 "1Fh" 以外的地址)        |  |  |  |  |  |
| 0  | 1    | 0  | 1  | 1  | 1  | 1  | 0  | 使用写入保护功能时,寄存器访问有效<br>(只可以访问 "1Fh" 的地址) |  |  |  |  |  |

**备注 1.** 出厂时的默认设定:0000 0000 b (寄存器访问无效)

2. 地址 "CFh" 是易失性存储器。

### 2.2 产品信息

可以存储设备编号、制造年月日等产品固有信息的领域。

### 表21 产品信息

| 地址   | R/W | В7 | В6 | B5 | B4     | В3     | B2 | B1 | В0 |
|------|-----|----|----|----|--------|--------|----|----|----|
| 00 h | R/W |    |    |    |        |        |    |    |    |
| 01 h | R/W |    |    |    |        |        |    |    |    |
| 02 h | R/W |    |    |    |        |        |    |    |    |
| 03 h | R/W |    |    |    |        |        |    |    |    |
| 04 h | R/W |    |    | 设  | 备编号、制造 | 年月日等的存 | 字储 |    |    |
| 05 h | R/W |    |    |    |        |        |    |    |    |
| 06 h | R/W |    |    |    |        |        |    |    |    |
| 07 h | R/W |    |    |    |        |        |    |    |    |
| 08 h | R/W |    |    |    |        |        |    |    |    |

**备注** 出厂时的默认设定:0000 0000 b

### 2.3 剪切调整用数据

存储灵敏度温度特性、输出失调电压温度漂移调整所需信息的领域。

### 表22 剪切调整用数据

| 地址   | R/W | B7 | B6 | B5     | B4     | В3       | B2       | B1  | B0 |
|------|-----|----|----|--------|--------|----------|----------|-----|----|
| 09 h | R   |    |    |        |        |          |          |     |    |
| 0A h | R   |    | 输出 | 出失调电压温 | 度漂移调整用 | ]数据 (输出电 | .压特性: 正极 | (时) |    |
| 0B h | R   |    |    |        |        |          |          |     |    |
| 0C h | R   |    |    |        |        |          |          |     |    |
| 0D h | R   |    | 输出 | 出失调电压温 | 度漂移调整用 | ]数据 (输出电 | .压特性: 负极 | 时)  |    |
| 0E h | R   |    |    |        |        |          |          |     |    |
| 0F h | R   |    |    | 磁性灵    | 敏度温度漂和 | 多调整进阶修   | 正数据      |     |    |

备注 出厂时的默认设定:写入最佳剪切调整代码出厂

#### 2.4 磁特性的调整

用于磁性灵敏度、磁性灵敏度温度漂移、输出电压的极性选择。

#### 表23 磁特性的调整

| 地址   | R/W | B7   | В6         | B5 | B4   | В3               | B2        | B1    | B0            |  |  |
|------|-----|------|------------|----|------|------------------|-----------|-------|---------------|--|--|
| 11 h | R/W | -    | -          | -  |      | SE               | ENSE_COAR | SE    |               |  |  |
| 12 h | R/W | -    | -          | -  | -    | SENSE_<br>COARSE |           |       |               |  |  |
| 14 h | R/W |      | SENSE_FINE |    |      |                  |           |       |               |  |  |
| 15 h | R/W | -    |            |    | SENS | SE_TC            |           |       | SENSE_<br>REV |  |  |
| 1A h | R/W | FBW_ | SEL*1      | -  | -    | -                | -         | SENSI | E_FINE        |  |  |

<sup>\*1.</sup> 请参阅 "2.7 频带宽度的选择 (FBW\_SEL)"。

备注 -: Don't care

# 2. 4. 1 磁性灵敏度的粗调整 (SENSE\_COARSE)

通过改变SENSE\_COARSE来进行磁性灵敏度的粗调整。

表24 磁性灵敏度的粗调整

|    |    |    | 11 | h  |    |    |    |    |    |    | 12 | h h |    |    |    | 磁性灵敏度的粗调整 (Typ.) |  |
|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|------------------|--|
| B7 | B6 | B5 | B4 | В3 | B2 | B1 | В0 | B7 | B6 | B5 | B4 | В3  | B2 | B1 | В0 | 坳往火蚁及的租驹笙(Typ.)  |  |
| -  | -  | -  | 0  | 0  | 0  | 0  | 0  | -  | -  | -  | -  | -   | -  | -  | 0  | 5600倍 (75 dB)    |  |
| -  | -  | -  | 0  | 0  | 0  | 0  | 0  | -  | -  | -  | -  | -   | -  | _  | 1  | 2800倍 (69 dB)    |  |
| -  | -  | -  | 0  | 0  | 1  | 0  | 0  | -  | -  | -  | -  | -   | -  | -  | 1  | 1400倍 (63 dB)    |  |
| -  | -  | ı  | 0  | 0  | 1  | 1  | 0  | 1  | 1  | ı  | -  | 1   | ı  | -  | 1  | 700倍 (57 dB)     |  |
| -  | -  | ı  | 0  | 0  | 1  | 1  | 1  | ı  | ı  | ı  | -  | ı   | ı  | -  | 1  | 350倍 (51 dB)     |  |
| -  | -  | 1  | 1  | 0  | 1  | 1  | 1  | -  | -  | ı  | -  | -   | ı  | -  | 1  | 175倍 (45 dB)     |  |
| -  | -  | -  | 1  | 1  | 1  | 1  | 1  | -  | -  | -  | -  | -   | -  | -  | 1  | 87.5倍 (39 dB)    |  |

**备注 1.** 出厂时的默认设定:0000 0000 b (地址 "11 h"), 0000 0001 b (地址 "12 h")

2. -: Don't care

# 2. 4. 2 磁性灵敏度的微调整 (SENSE\_FINE)

通过改变SENSE\_FINE来进行磁性灵敏度的微调整。

表25 磁性灵敏度的微调整

|    |    |    | 14 | \ h |    |    |    | 14 h |    |    |    |    |    |    |    | 修正值   | 磁性灵敏度的微调整 (Typ.) |  |
|----|----|----|----|-----|----|----|----|------|----|----|----|----|----|----|----|-------|------------------|--|
| В7 | В6 | B5 | B4 | В3  | B2 | B1 | B0 | В7   | B6 | B5 | B4 | В3 | B2 | B1 | B0 | 沙正恒   | 做住火蚁及时似响罡(Typ.)  |  |
|    |    | -  | -  | -   | -  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0     | 0.00%            |  |
|    |    |    | -  | -   | -  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 1  | -1    | -0.08%           |  |
|    | *1 |    |    |     | -  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 1  | 0  | -2    | -0.16%           |  |
|    |    |    | -  | -   | -  | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 0  | 1  | 1  | -3    | -0.24%           |  |
|    |    |    |    |     |    |    |    |      |    |    |    |    |    |    |    |       |                  |  |
|    |    | -  | 1  | -   | 1  | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 0  | -1022 |                  |  |
|    |    | -  | -  | -   | -  | 1  | 1  | 1    | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -1023 |                  |  |

<sup>\*1.</sup> 请参阅 "2.7 频带宽度的选择 (FBW\_SEL)"。

备注 1. 出厂时的默认设定:写入最佳剪切调整代码出厂

#### 2. 4. 3 输出电压的极性选择 (SENSE\_REV)

通过改变SENSE\_REV来选择输出电压的极性。

#### 表26 输出电压的极性选择

|    |    |                      | 15 | i h |  |   |    | 输出电压极性                                         |  |  |  |  |  |  |
|----|----|----------------------|----|-----|--|---|----|------------------------------------------------|--|--|--|--|--|--|
| В7 | B6 | B6 B5 B4 B3 B2 B1 B0 |    |     |  |   | B0 | 刑山电压板性<br>──────────────────────────────────── |  |  |  |  |  |  |
| -  |    | *4                   |    |     |  |   | 0  | 正极                                             |  |  |  |  |  |  |
| -  |    | <b>~1</b>            |    |     |  | 1 | 负极 |                                                |  |  |  |  |  |  |

\*1. 请参阅 "2. 4. 4 磁性灵敏度温度漂移的调整 (SENSE\_TC)"。

**备注 1.** 出厂时的默认设定:0000 0000 b

2. -: Don't care

# 2. 4. 4 磁性灵敏度温度漂移的调整(SENSE\_TC)

通过改变SENSE\_TC来调整磁性灵敏度的温度漂移。

表27 磁性灵敏度温度漂移的调整

|    |    |    | 15 | i h |    |    |    | 修正值 | 以此目标应组成: (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |  |  |  |  |
|----|----|----|----|-----|----|----|----|-----|--------------------------------------------------|--|--|--|--|
| В7 | В6 | B5 | B4 | В3  | B2 | B1 | В0 | 沙正诅 | 磁性灵敏度温度漂移的调整(Typ.)                               |  |  |  |  |
| -  | 0  | 1  | 1  | 1   | 1  | 1  | *1 | -31 |                                                  |  |  |  |  |
| -  | 0  | 1  | 1  | 1   | 1  | 0  |    | -30 |                                                  |  |  |  |  |
|    |    |    |    |     |    |    |    |     |                                                  |  |  |  |  |
| -  | 0  | 0  | 0  | 0   | 1  | 1  |    | -3  | -75 ppm/°C                                       |  |  |  |  |
| -  | 0  | 0  | 0  | 0   | 1  | 0  |    | -2  | -50 ppm/°C                                       |  |  |  |  |
| -  | 0  | 0  | 0  | 0   | 0  | 1  |    | -1  | -25 ppm/°C                                       |  |  |  |  |
| -  | 0  | 0  | 0  | 0   | 0  | 0  | *1 | 0   | 0 ppm/°C                                         |  |  |  |  |
| -  | 1  | 0  | 0  | 0   | 0  | 1  |    | +1  | +25 ppm/°C                                       |  |  |  |  |
| -  | 1  | 0  | 0  | 0   | 1  | 0  |    | +2  | +50 ppm/°C                                       |  |  |  |  |
| -  | 1  | 0  | 0  | 0   | 1  | 1  |    | +3  | +75 ppm/°C                                       |  |  |  |  |
|    |    |    |    |     |    |    |    |     |                                                  |  |  |  |  |
| -  | 1  | 1  | 1  | 1   | 1  | 0  | *1 | +30 | • • •                                            |  |  |  |  |
| _  | 1  | 1  | 1  | 1   | 1  | 1  | 1  | +31 | • • •                                            |  |  |  |  |

\*1. 请参阅 "2. 4. 3 输出信号的极性选择 (SENSE\_REV)"。

**备注 1.** 出厂时的默认设定:0000 0000 b

#### 2.5 输出电压特性的调整

用于输出失调电压、输出失调电压调整范围变更功能的有效 / 无效、输出失调电压温度特性的调整。

#### 表28 输出电压特性的调整

| 地址   | R/W | B7            | B6 | B5 | B4   | В3   | B2 | B1 | B0 |  |  |
|------|-----|---------------|----|----|------|------|----|----|----|--|--|
| 10 h | R/W |               |    |    | VOUT | _OFF |    |    |    |  |  |
| 19 h | R/W | VOUT_OFF_TC*1 |    |    |      |      |    |    |    |  |  |

<sup>\*1.</sup> 用于调整输出失调电压温度漂移。详情请向代理商咨询。

备注 -: Don't care

# 2. 5. 1 输出失调电压的调整 (VOUT\_OFF)

通过改变VOUT\_OFF来调整输出失调电压。

#### 表29 输出失调电压的调整

|    |    |    | 10 | h  |    |    |    |    |     |    | 19   | h    |      |    |    | <b>悠</b> 工店 | <b>松山井洲中区的油敷 (Typ.)</b> |
|----|----|----|----|----|----|----|----|----|-----|----|------|------|------|----|----|-------------|-------------------------|
| В7 | B6 | B5 | В4 | В3 | B2 | B1 | В0 | В7 | B6  | B5 | B4   | В3   | B2   | B1 | В0 | 修正值         | 输出失调电压的调整 (Typ.)        |
| 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |     | -  |      |      |      |    |    | +255        | 禁止设定                    |
| 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | *1  | -  |      |      | *0   |    |    | +254        |                         |
| 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  | **1 | -  |      |      | *2   |    |    | +253        |                         |
| 0  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 0  |     | -  |      |      |      |    |    | +252        |                         |
|    |    |    |    |    |    |    |    |    |     |    |      |      |      |    |    |             |                         |
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  |     | -  |      |      |      |    |    | +3          | +1.8 mV                 |
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |     | -  |      |      |      |    |    | +2          | +1.2 mV                 |
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |     | -  |      |      |      |    |    | +1          | +0.6 mV                 |
| 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | *1  | -  |      |      | *2   |    |    | 0           | 0.0 mV                  |
| 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  |     | -  |      |      |      |    |    | -1          | -0.6 mV                 |
| 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  |     | -  |      |      |      |    |    | -2          | -1.2 mV                 |
| 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1  |     | -  |      |      |      |    |    | -3          | -1.8 mV                 |
|    |    |    |    |    |    |    |    |    |     |    |      |      |      |    |    |             |                         |
| 1  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | 0  |     | -  | -    |      | -252 |    |    |             |                         |
| 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | *1  | -  | - *2 | -253 |      |    |    |             |                         |
| 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  |     | -  | -    |      | -254 |    |    |             |                         |

<sup>\*1.</sup> 请参阅 "表30 输出失调电压的调整范围扩展"。

备注 1. 出厂时的默认设定:写入最佳剪切调整代码出厂

2. -: Don't care

可以更广泛地扩展输出失调电压的调整范围。

#### 表30 输出失调电压的调整范围扩展

|    |    |    | 19 | h  |    |    |    | 输出失调电压的调整范围扩展   |
|----|----|----|----|----|----|----|----|-----------------|
| В7 | B6 | B5 | B4 | В3 | B2 | B1 | В0 | 制山大师电压的师罡况图11 茂 |
| *4 | 0  | -  |    |    | *2 |    |    | 调整范围扩展为关        |
| ^1 | 1  | -  |    |    |    |    |    | 调整范围扩展为开        |

<sup>\*1.</sup> 请参阅 "表29 输出失调电压的调整"。

**备注 1.** 出厂时的默认设定: B6 = 0

<sup>\*2.</sup> 请参阅 "表28 输出电压特性的调整"。

<sup>\*2.</sup> 请参阅 "表28 输出电压特性的调整"。

#### 2.6 基准电压特性的调整

用于基准电压的选择、基准电压输出模式 / 输入模式的选择、基准电压的微调整。

#### 表31 基准电压特性的调整

| 地址   | R/W | В7 | B6 | B5        | B4           | В3           | B2 | B1   | В0  |
|------|-----|----|----|-----------|--------------|--------------|----|------|-----|
| 16 h | R/W | -  | -  | -         | VREF_<br>SEL | VREF_<br>EXT | -  | VREF | SEL |
| 17 h | R/W | -  | -  | VREF_FINE |              |              |    |      |     |

备注 -: Don't care

# 2. 6. 1 基准电压输出模式 / 输入模式的选择 (VREF\_EXT)

通过改变VREF EXT来选择基准电压输出模式和基准电压输入模式。

#### 表32 基准电压输出模式/输入模式的选择

|    |    |    | 16 | î h |    |    |    | 基准电压模式   |  |  |  |  |  |
|----|----|----|----|-----|----|----|----|----------|--|--|--|--|--|
| В7 | B6 | B5 | B4 | В3  | B2 | B1 | B0 |          |  |  |  |  |  |
| -  | -  | -  | *4 | 0   | -  | *  | 4  | 基准电压输出模式 |  |  |  |  |  |
| -  | -  | -  | 7  | 1   | -  |    | 1  | 基准电压输入模式 |  |  |  |  |  |

\*1. 请参阅 "2. 6. 2 基准电压输出的选择 (VREF\_SEL)"。

**备注 1.** 出厂时的默认设定:0000 0000 b

2. -: Don't care

# 2. 6. 2 基准电压输出的选择 (VREF\_SEL)

在基准电压输出模式时,通过改变VREF\_SEL来改变基准电压的输出。

表33 基准电压输出的选择

|    |    |    | 16 | h h |    |    |    | ************************************* |
|----|----|----|----|-----|----|----|----|---------------------------------------|
| В7 | B6 | B5 | B4 | В3  | B2 | B1 | В0 | 基准电压的输出 (Typ.)                        |
| -  | -  | -  | 0  |     | -  | 0  | 0  | 2.50 V                                |
| -  | -  | _  | 0  | *4  | -  | 0  | 1  | 1.65 V                                |
| -  | -  | -  | 1  | *1  | -  | 1  | 0  | 1.50 V                                |
| -  | -  | -  | 1  |     | -  | 1  | 1  | 0.50 V                                |

\*1. 请参阅 "2. 6. 1 基准电压输出模式 / 输入模式的选择 (VREF\_EXT)"。

#### 注意 上述以外禁止设定。

**备注 1.** 出厂时的默认设定:0000 0000 b

# 2. 6. 3 基准电压输出的微调整 (VREF\_FINE)

在基准电压输出模式时,通过改变VREF\_FINE来微调整基准电压的输出。

表34 基准电压输出的微调整

|    |    |    | 17 | 'h |    |    |    | 修正值 |                           | 基准电压输出的                   | 内微调整 (Typ.)               |                           |
|----|----|----|----|----|----|----|----|-----|---------------------------|---------------------------|---------------------------|---------------------------|
| В7 | B6 | B5 | B4 | В3 | B2 | B1 | В0 | 沙正恒 | V <sub>REF</sub> = 2.50 V | V <sub>REF</sub> = 1.65 V | V <sub>REF</sub> = 1.50 V | V <sub>REF</sub> = 0.50 V |
| -  | -  | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0 mV                      | 0 mV                      | 0 mV                      | 0 mV                      |
| -  | -  | 0  | 0  | 0  | 0  | 0  | 1  | +1  | +2.5 mV                   | +1.7 mV                   | +1.5 mV                   | +0.5 mV                   |
| -  | -  | 0  | 0  | 0  | 0  | 1  | 0  | +2  | +5.0 mV                   | +3.3 mV                   | +3.0 mV                   | +1.0 mV                   |
| -  | -  | 0  | 0  | 0  | 0  | 1  | 1  | +3  | +7.5 mV                   | +5.0 mV                   | +4.5 mV                   | +1.5 mV                   |
|    |    |    |    |    |    |    |    |     |                           |                           |                           |                           |
| -  | -  | 1  | 1  | 1  | 1  | 0  | 1  | +61 |                           |                           |                           |                           |
| -  | -  | 1  | 1  | 1  | 1  | 1  | 0  | +62 |                           |                           |                           |                           |
| -  | -  | 1  | 1  | 1  | 1  | 1  | 1  | +63 |                           |                           |                           |                           |

**备注 1.** 出厂时的默认设定:写入最佳剪切调整代码出厂

2. -: Don't care

# 2.7 频带宽度的选择 (FBW\_SEL)

通过改变FBW\_SEL来选择频带宽度。

表35 频带宽度的选择

| I | 地址   | R/W | B7  | В6   | B5 | B4 | В3 | B2 | B1    | B0      |
|---|------|-----|-----|------|----|----|----|----|-------|---------|
|   | 1A h | R/W | FBW | _SEL | -  | -  | -  |    | SENSE | _FINE*1 |

|    | 1A h |    |    |    |    |    |    | 频带宽度 (Typ.) |
|----|------|----|----|----|----|----|----|-------------|
| B7 | B6   | B5 | B4 | В3 | B2 | B1 | В0 | 妙市克及 (Typ.) |
| 0  | 0    | -  | -  | -  | -  |    |    | 400 kHz     |
| 0  | 1    | -  | -  | -  | ı  | *  | 1  | 200 kHz     |
| 1  | 0    | -  | -  | _  | -  |    |    | 100 kHz     |

<sup>\*1.</sup> 请参阅 "2. 4. 2 磁性灵敏度的微调整 (SENSE\_FINE)"。

# 注意 上述以外禁止设定。

**备注 1.** 出厂时的默认设定:[B7, B6] = [0, 0]

#### 2.8 热敏关闭有 / 无 (TSD\_EN)

通过改变TSD\_EN来选择热敏关闭的有 / 无。

#### 表36 热敏关闭有/无的选择

| 地址   | R/W | B7 | B6 | B5 | B4 | В3 | B2 | B1 | B0     |
|------|-----|----|----|----|----|----|----|----|--------|
| 13 h | R/W | -  | -  | -  | -  | -  | -  | -  | TSD_EN |

|    | 13 h |    |    |    |    |    |    | 热敏关闭  |
|----|------|----|----|----|----|----|----|-------|
| В7 | B6   | B5 | B4 | В3 | B2 | B1 | В0 | 於敬大MJ |
| -  | -    | -  | -  | -  | -  | -  | 0  | 无     |
| _  | -    |    | -  | -  | -  | -  | 1  | 有     |

**备注 1.** 出厂时的默认设定:0000 0001 b

2. -: Don't care

# 2.9 写入保护有效 / 无效 (WP)

通过改变WP来选择写入保护的有效 / 无效。

通过启用写入保护,可以防止错误地将数据存储到内置的非易失性存储器中。因此,可在最终确定测试工序时使用,但此功能并非必须使用。

如果启用写入保护,则无法向非易失性存储器进行写入。

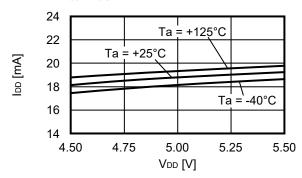
仅限在地址CFh中输入 "0101 1110 b" 时, 才可进行写入保护有效 / 无效的输入 (请参阅 "2.1 关键字寄存器")。

# 表37 写入保护有效 / 无效的选择

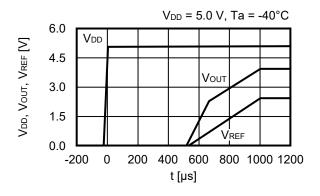
| 地址   | R/W | B7 | B6 | B5 | B4 | В3 | B2 | B1 | В0 |
|------|-----|----|----|----|----|----|----|----|----|
| 1F h | R/W | -  | -  | -  | -  | -  | -  | -  | WP |

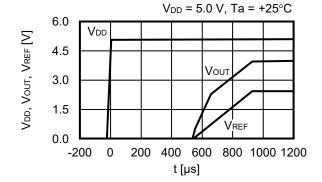
|    | 1F h |    |    |    |    |    |    | 写入保护 |
|----|------|----|----|----|----|----|----|------|
| B7 | B6   | B5 | B4 | В3 | B2 | B1 | В0 | 与八体扩 |
| -  | -    | -  | -  | -  | -  | -  | 0  | 无效   |
| -  | -    | -  | -  | -  | -  | -  | 1  | 有效   |

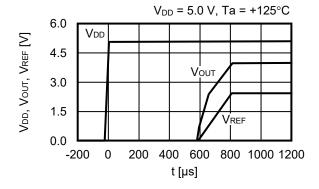
**备注 1.** 出厂时的默认设定:0000 0000 b


# ■ 注意事项

- 不仅限于本IC, 半导体器件请不要在超过绝对最大额定值的条件下使用。特别请充分注意电源电压。额定值以外的瞬间的急变电压会成为封闭或误工作的原因。详细的使用条件,请充分确认数据表上所记载的项目后,再予以使用。
- 如果将电源设置为高阻抗状态,有可能因击穿电流等而导致电源电压的下降,从而引发本IC的误工作。因此,为降低电源的阻抗,要充分注意接线方式。
- 请注意,如果电源电压发生急剧的变化,有可能导致IC的误工作。在电源电压发生急剧变化的环境下使用本IC时,推荐 多次读出IC的输出电压来对其进行判定。
- 本IC虽内置了防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 请注意电源电压、输出电阻的使用条件,使IC内的功耗不超过容许功耗。
- 若对本IC施加较大的应力,则可能导致磁特性发生改变。在安装到基板上时或安装后的操作过程中,也要注意不要对本IC施加较大的应力。
- 封装的散热性能会根据应用条件而改变。请在实际的应用电路上进行充分的实测验证,确认不存在问题。
- 使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格,或因进口国等原因,包含本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

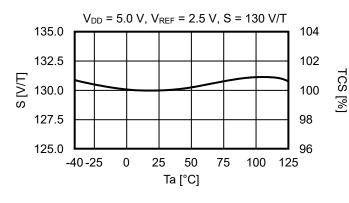

# ■ 各种特性数据 (典型数据)


# 1. 电源特性

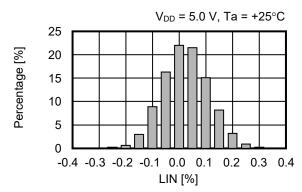

# 1.1 消耗电流



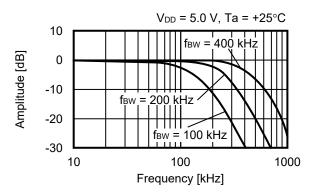
#### 1.2 启动时间





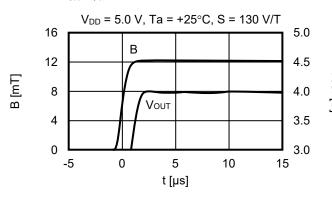




# 2. 磁特性

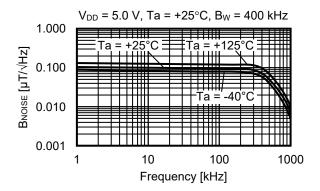

# 2.1 磁性灵敏度



# 2.2 磁性灵敏度线性误差




# 2.3 频带宽度




# 3. 输出电压特性

# 3.1 响应波形

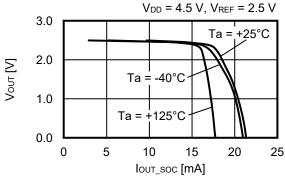


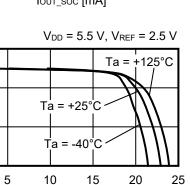
# 3.2 输入磁束密度噪声电压密度



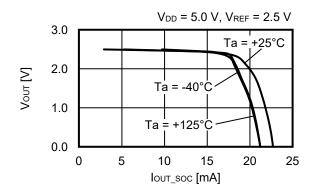
#### 3.3 输出源电流

3.0

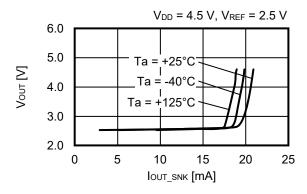

2.0

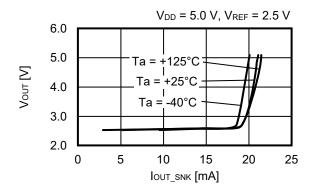

1.0

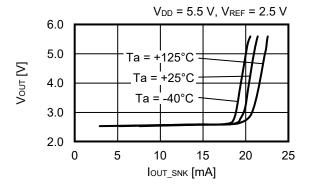
0.0


0

Vour [V]

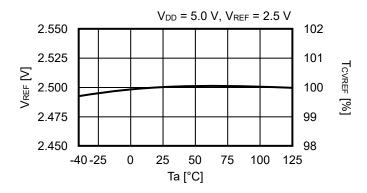


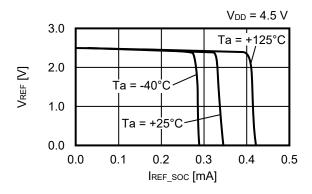


IOUT\_SOC [mA]

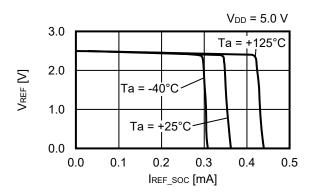


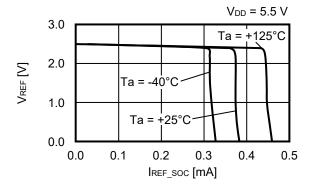
#### 3.4 输出吸收电流



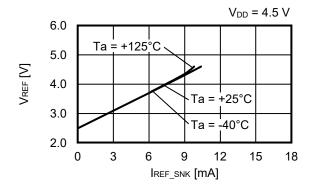


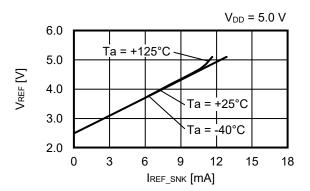



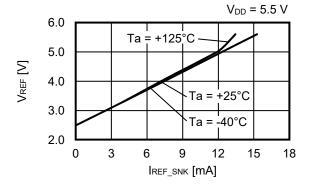


# 4. 基准电压特性


# 4.1 基准电压输出




#### 4.2 基准电压源电流 (VREF = 2.5 V)

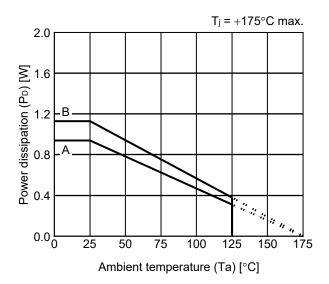





# 4. 3 基准电压吸收电流 (VREF = 2.5 V)








48

# **■** Power Dissipation

# TMSOP-8

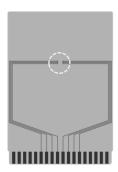


 Board
 Power Dissipation (PD)

 A
 0.94 W

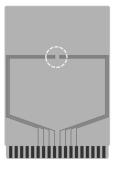
 B
 1.13 W

 C


 D

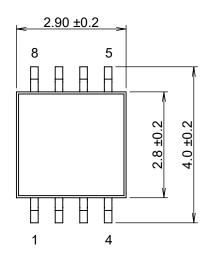
 E

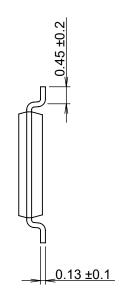
# **TMSOP-8 Test Board**

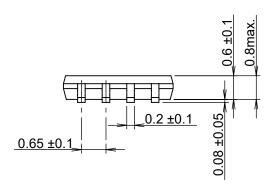

# (1) Board A





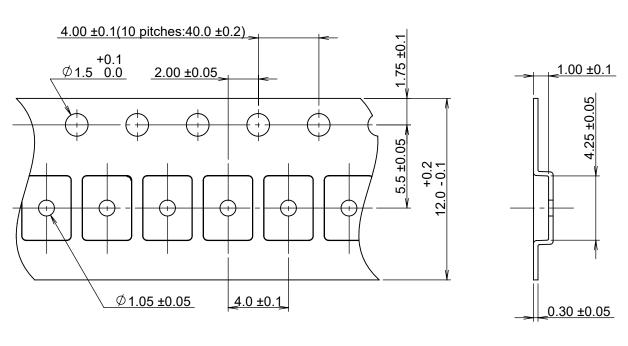

| Item                     |      | Specification                               |  |  |
|--------------------------|------|---------------------------------------------|--|--|
| Size [mm]                |      | 114.3 x 76.2 x t1.6                         |  |  |
| Material                 |      | FR-4                                        |  |  |
| Number of copper foil la | ayer | 2                                           |  |  |
|                          | 1    | Land pattern and wiring for testing: t0.070 |  |  |
| Copper foil layer [mm]   | 2    | -                                           |  |  |
| Copper foil layer [min]  | 3    | -                                           |  |  |
|                          | 4    | 74.2 x 74.2 x t0.070                        |  |  |
| Thermal via              |      | -                                           |  |  |

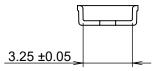

# (2) Board B

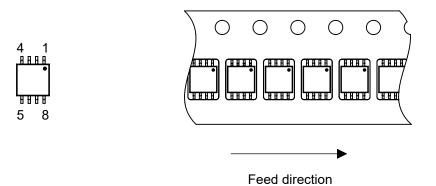



| Item                     |      | Specification                               |  |  |
|--------------------------|------|---------------------------------------------|--|--|
| Size [mm]                |      | 114.3 x 76.2 x t1.6                         |  |  |
| Material                 |      | FR-4                                        |  |  |
| Number of copper foil la | ayer | 4                                           |  |  |
|                          | 1    | Land pattern and wiring for testing: t0.070 |  |  |
| Connor foil lover [mm]   | 2    | 74.2 x 74.2 x t0.035                        |  |  |
| Copper foil layer [mm]   | 3    | 74.2 x 74.2 x t0.035                        |  |  |
|                          | 4    | 74.2 x 74.2 x t0.070                        |  |  |
| Thermal via              |      | -                                           |  |  |

No. TMSOP8-A-Board-SD-1.0

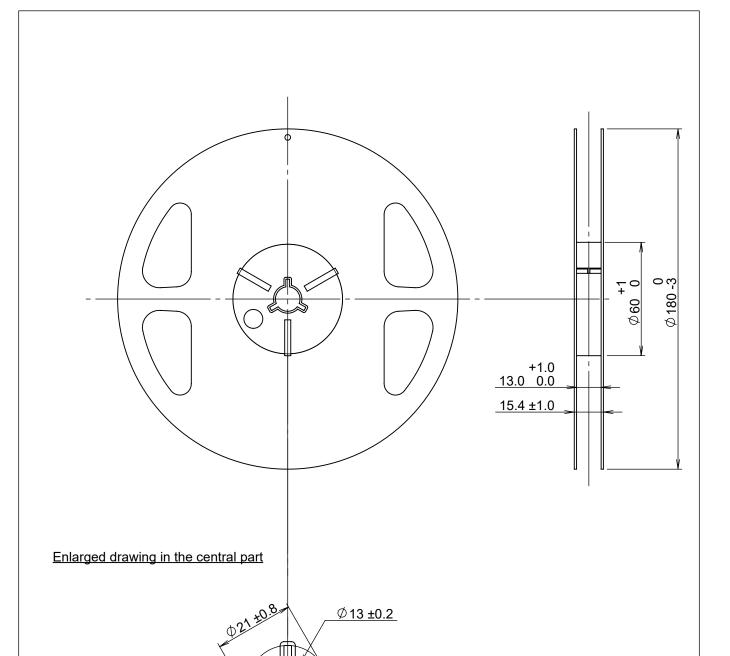



# No.FM008-A-P-SD-1.2

| TITLE      | TMSOP8-A-PKG Dimensions |  |  |  |  |  |  |  |  |  |
|------------|-------------------------|--|--|--|--|--|--|--|--|--|
| No.        | FM008-A-P-SD-1.2        |  |  |  |  |  |  |  |  |  |
| ANGLE      | ⊕€∃                     |  |  |  |  |  |  |  |  |  |
| UNIT       | mm                      |  |  |  |  |  |  |  |  |  |
|            |                         |  |  |  |  |  |  |  |  |  |
|            |                         |  |  |  |  |  |  |  |  |  |
|            |                         |  |  |  |  |  |  |  |  |  |
| ABLIC Inc. |                         |  |  |  |  |  |  |  |  |  |








No. FM008-A-C-SD-3.0

| TITLE      | TMSOP8-A-Carrier Tape |  |  |  |  |  |  |  |  |
|------------|-----------------------|--|--|--|--|--|--|--|--|
| No.        | FM008-A-C-SD-3.0      |  |  |  |  |  |  |  |  |
| ANGLE      |                       |  |  |  |  |  |  |  |  |
| UNIT       | mm                    |  |  |  |  |  |  |  |  |
|            |                       |  |  |  |  |  |  |  |  |
|            |                       |  |  |  |  |  |  |  |  |
|            |                       |  |  |  |  |  |  |  |  |
| ABLIC Inc. |                       |  |  |  |  |  |  |  |  |



No. FM008-A-R-SD-2.0

| TITLE | TMSOP8-A-Reel       |  |      |       |  |  |  |  |  |  |  |  |
|-------|---------------------|--|------|-------|--|--|--|--|--|--|--|--|
| No.   | o. FM008-A-R-SD-2.0 |  |      |       |  |  |  |  |  |  |  |  |
| ANGLE |                     |  | QTY. | 4,000 |  |  |  |  |  |  |  |  |
| UNIT  | UNIT mm             |  |      |       |  |  |  |  |  |  |  |  |
|       |                     |  |      |       |  |  |  |  |  |  |  |  |
|       |                     |  |      |       |  |  |  |  |  |  |  |  |
|       |                     |  |      |       |  |  |  |  |  |  |  |  |
|       | ABLIC Inc.          |  |      |       |  |  |  |  |  |  |  |  |

# 免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可能未经预告而更改。
- 2. 本资料记载的电路示例和使用方法仅供参考,并非保证批量生产的设计。使用本资料的信息后,发生并非因本资料记载的产品(以下称本产品)而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承担任何责任。
- 3. 因本资料记载错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本产品并非是设计用于可能对生命、人体造成影响的设备或装置的部件,也非是设计用于可能对财产造成损害的设备或装置的部件(医疗设备、防灾设备、安全防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。请勿将本产品用于上述设备或装置的部件。本公司事先明确标示的车载用途例外。作为上述设备或装置的部件使用本产品时,或本公司事先明确标示的用途以外使用本产品时,所导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。为了防止因本产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。本资料记载的内容并非是对本公司或第三方的知识产权、 其它权利的实施及使用的承诺或保证。严禁在未经本公司许可的情况下转载、复制或向第三方公开本资料的一部分或全 部。
- 14. 有关本资料的详细内容等如有不明之处,请向代理商咨询。
- 15. 本免责事项以日语版为正本。即使有英语版或中文版的翻译件, 仍以日语版的正本为准。

2.4-2019.07

