

S-82P5A系列

1

www.ablic.com

3节~5节电池串联用电池保护IC (二次保护用)

© ABLIC Inc., 2025 Rev.1.0_00

本IC内置高精度电压检测电路和延迟电路,是用于锂离子可充电电池的二次保护IC。通过将各节电池间短路,可适用于3节~5节电池的串联连接。

■ 特点

• 针对各节电池的高精度电压检测电路

过充电检测电压n (n = 1 ~ 5)

2.700 V ~ 4.700 V (5 mV进阶) 精度±15 mV (Ta = +25°C)

精度±20 mV (Ta = -10°C ~ +60°C)

过充电解除电压n (n = 1 ~ 5)*1

2.700 V ~ 4.700 V 精度±50 mV (Ta = +25°C)

• 仅通过内置电路即可获得过充电检测延迟时间 (不需要外接电容)

● 输出方式: CMOS输出、N沟道开路漏极输出

● 输出逻辑: 动态 "H"、动态 "L"

• 备有通过缩短延迟时间确认过充电检测电压的测试模式

● 高耐压: 绝对最大额定值28 V

● 工作电压范围广:3.6 V ~ 26 V

◆ 工作温度范围广:Ta = -40°C ~ +85°C

• 消耗电流低

工作时: 0.3 μA (典型値)、0.6 μA (最大値) (Ta = +25°C)

• 无铅 (Sn 100%)、无卤素

*1. 过充电解除电压 = 过充电检测电压 + 过充电滞后电压 (过充电滞后电压为在0 mV ~ -400 mV的范围内以50 mV为进阶单位来选择)

■ 用途

• 锂离子可充电电池

■ 封装

- TMSOP-8
- SNT-8A

■ 框图

1. CMOS输出产品

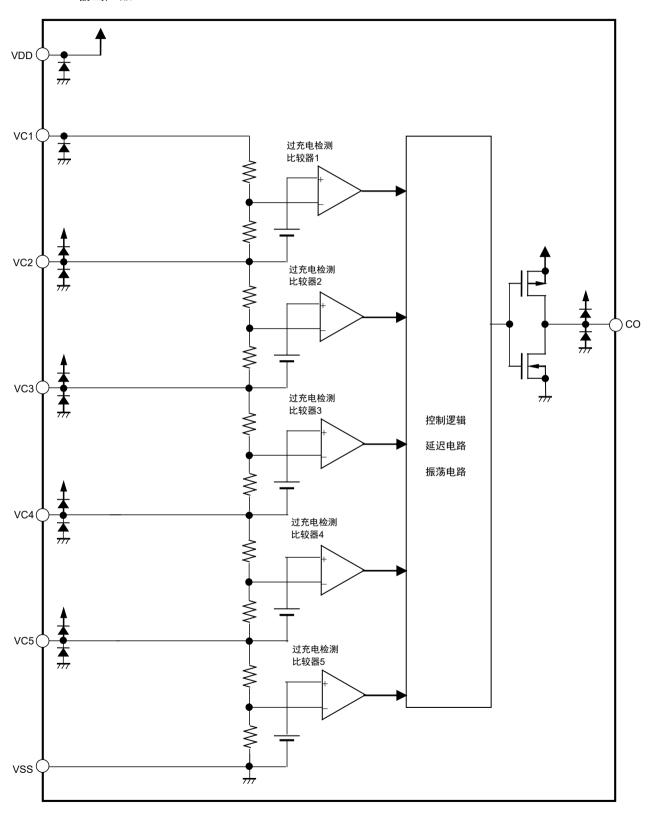
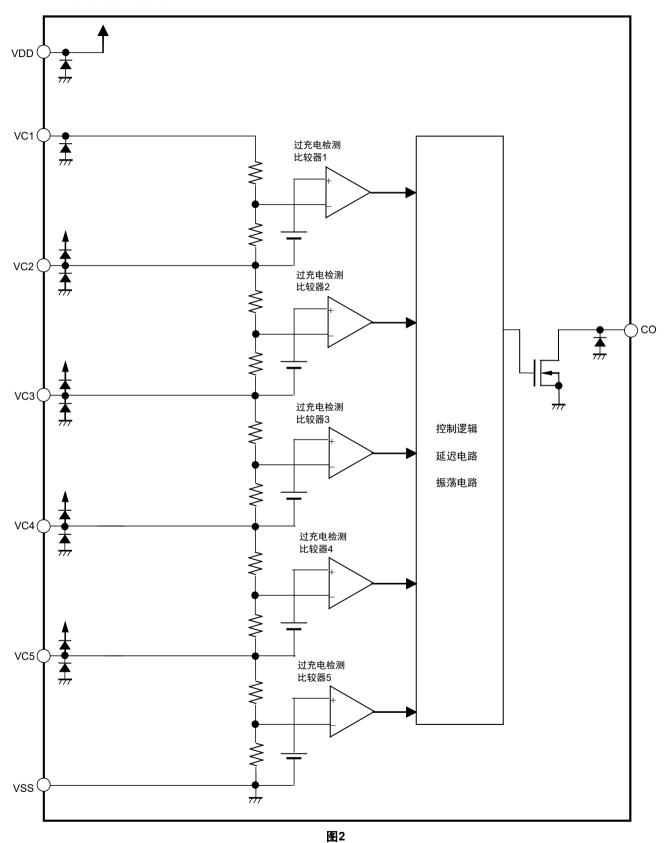
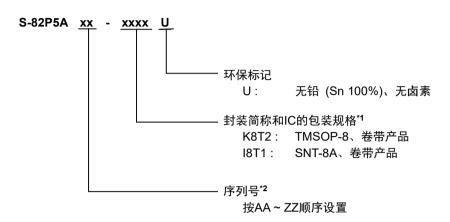



图1

备注 图中所示的二极管为寄生二极管。


2. N沟道开路漏极输出产品

备注 图中所示的二极管为寄生二极管。

■ 产品型号的构成

1. 产品名

- *1. 请参阅卷带图。
- *2. 请参阅 "3. 产品名目录"。

2. 封装

表1 封装图纸号码

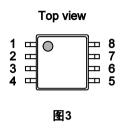
封装名	外形尺寸图	卷带图	带卷图	焊盘图
TMSOP-8	FM008-A-P-SD	FM008-A-C-SD	FM008-A-R-SD	_
SNT-8A	PH008-A-P-SD	PH008-A-C-SD	PH008-A-R-SD	PH008-A-L-SD

3. 产品名目录

3.1 TMSOP-8

表2 (1/2)

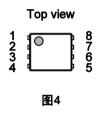
产品名	过充电检测电压	过充电解除电压	过充电检测延迟时间	过充电解除延迟时间
	[V _{CU}]	[V _{CL}]	[t _{CU}]	[t _{CL}]
S-82P5AAA-K8T2U	3.300 V	3.100 V	2 s	64 ms


表2 (2/2)

产品名	输出方式	输出逻辑
S-82P5AAA-K8T2U	CMOS输出	动态 "H"

备注 如果需要上述以外的产品时,请向代理商咨询。

■ 引脚排列图


1. TMSOP-8

引脚号	符号	描述
1	VDD	正电源输入端子
2	VC1	电池1的正电压连接端子
3	VC2	电池1的负电压连接端子、电池2的正电压连接端子
4	VC3	电池2的负电压连接端子、电池3的正电压连接端子
5	VC4	电池3的负电压连接端子、电池4的正电压连接端子
6	VC5	电池4的负电压连接端子、电池5的正电压连接端子
7	VSS	负电源输入端子、电池5的负电压连接端子
8	СО	充电控制用FET门极连接端子

表3

2. SNT-8A

表4

引脚号	符号	描述
1	VDD	正电源输入端子
2	VC1	电池1的正电压连接端子
3	VC2	电池1的负电压连接端子、电池2的正电压连接端子
4	VC3	电池2的负电压连接端子、电池3的正电压连接端子
5	VC4	电池3的负电压连接端子、电池4的正电压连接端子
6	VC5	电池4的负电压连接端子、电池5的正电压连接端子
7	VSS	负电源输入端子、电池5的负电压连接端子
8	СО	充电控制用FET门极连接端子

■ 绝对最大额定值

表5

(除特殊注明以外: Ta = +25°C)

项目		符号	适用端子	绝对最大额定值	单位
VDD端子 – VSS端	VDD端子 – VSS端子间输入电压		VDD	$V_{SS} - 0.3 \sim V_{SS} + 28$	V
输入端子电压		\/	VC1	$V_{SS} - 0.3 \sim V_{SS} + 28$	V
		V _{IN}	VC2, VC3, VC4, VC5	$V_{SS}-0.3 \sim V_{DD}+0.3$	V
CO端子输出电压	CMOS输出产品			$V_{SS} - 0.3 \sim V_{DD} + 0.3$	٧
CO编于拥山电压	N沟道开路漏极输出产品	Vco	CO	$V_{SS} - 0.3 \sim V_{SS} + 28$	٧
工作环境温度		T _{opr}	_	−40 ~ +85	°C
保存温度		T_{stg}	_	−40 ~ +125	°C

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性的 损伤。

■ 热敏电阻值

表6

项目	符号	条件	<u> </u>	最小值	典型值	最大值	单位
			Board A	-	160	1	°C/W
			Board B	_	133	1	°C/W
		TMSOP-8	Board C	_	_	_	°C/W
	ALθ		Board D	_	_	_	°C/W
 结至环境热阻 ^{*1}			Board E	_	1	1	°C/W
4年中央然图 1		SNT-8A	Board A	_	211	1	°C/W
			Board B	_	173	1	°C/W
			Board C	_	1	1	°C/W
			Board D	_	-		°C/W
			Board E	_	1	1	°C/W

^{*1.} 测定环境: 遵循JEDEC STANDARD JESD51-2A标准

备注 关于详情,请参阅 "■ Power Dissipation" 和 "Test Board"。

■ 电气特性

表7

(除特殊注明以外: Ta = +25°C)

				(1.3.1			
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
検出電圧							
过充电检测电压n	Vcun	Ta = +25°C	V _{CU} - 0.015	Vcu	V _{CU} + 0.015	V	1
(n = 1, 2, 3, 4, 5)	V CUn	Ta = -10°C ~ +60°C*1	V _{CU} - 0.020	Vcu	Vcu + 0.020	V	1
过充电解除电压n (n = 1, 2, 3, 4, 5)	V _{CLn}	-	V _{CL} - 0.050	VcL	V _{CL} + 0.050	V	1
输入电压							
VDD端子 – VSS端子间工作电压	VDSOP	_	3.6	_	26	V	_
输入电流							
工作时消耗电流	I _{OPE}	V1 = V2 = V3 = V4 = V5 = V _{CU} × 0.75 V	_	0.3	0.6	μΑ	2
过放电时消耗电流	I _{OPED}	V1 = V2 = V3 = V4 = V5 = V _{CU} × 0.4 V	_	_	0.3	μΑ	2
VC1端子输入电流	Ivc1	V1 = V2 = V3 = V4 = V5 = V _{CU} × 0.75 V	_	-	0.3	μΑ	3
VC2端子输入电流	I _{VC2}	V1 = V2 = V3 = V4 = V5 = V _{CU} × 0.75 V	-0.2	0	0.2	μΑ	3
VC3端子输入电流	I _{VC3}	V1 = V2 = V3 = V4 = V5 = V _{CU} × 0.75 V	-0.2	0	0.2	μΑ	3
VC4端子输入电流	I _{VC4}	V1 = V2 = V3 = V4 = V5 = V _{CU} × 0.75 V	-0.2	0	0.2	μΑ	3
VC5端子输入电流	I _{VC5}	V1 = V2 = V3 = V4 = V5 = V _{CU} × 0.75 V	-0.2	0	0.2	μΑ	3
输出电流							
CO端子源极电流	Ісон	_	-	_	-20	μА	4
CO端子吸收电流	I _{COL}	CMOS输出产品	0.4	_	_	mA	4
CO端子泄漏电流	I _{COLL}	N沟道开路漏极输出产品	-	_	0.1	μΑ	4
延迟时间							
过充电检测延迟时间	tcu	_	tcu × 0.8	tcu	tcu × 1.2	s	1
过充电解除延迟时间	t _{CL}	_	$t_{\text{CL}} \times 0.5$	t _{CL}	$t_{\text{CL}} \times 1.5$	ms	1
过充电定时复位延迟时间	t _{TR}	_	6	12	20	ms	1
测试模式移动时间	t _{TST}	_	_	_	10	ms	1

^{*1.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

■ 测定电路

1. 过充电检测电压n (V_{CUn})、过充电解除电压n (V_{CLn}) (测定电路1)

在设定V0 = 0 V, V1 ~ V5 = Vcu – 0.05 V后,缓慢提升V1电压,CO端子输出开始反转时V1的电压即为Vcu₁。 然后,在设定V1 = V_{CU} + 0.05 V, V2 ~ V5 = V_{CL} – 0.05 V后,缓慢降低V1电压,CO端子输出再次开始反转时V1的电压即为 V_{CL1} 。

其它的Vcun和Vcln (n = 2 ~ 5) 也可采用与n = 1时同样的方法求出。

2. 输出电流

(测定电路4)

2.1 CMOS输出产品

把SW1和SW2设定为关。

2.1.1 动态 "H"

(1) CO端子源极电流 (Ісон)

在设定V0 = 0 V, V1 = 4.8 V, V2 ~ V5 = 2.05 V, V6 = 0.5 V后, 把SW1设定为开。此时的I6电流即为 I_{COH} 。

(2) CO端子吸收电流 (IcoL)

在设定V0 = 0 V, V1 ~ V5 = 2.6 V, V7 = 0.5 V后, 把SW2设定为开。此时的I7电流即为IcoL。

2.1.2 动态 "L"

(1) CO端子源极电流 (Ісон)

在设定V0 = 0 V, V1 ~ V5 = 2.6 V, V6 = 0.5 V后,把SW1设定为开。此时的I6电流即为Iсон。

(2) CO端子吸收电流 (IcoL)

在设定V0 = 0 V, V1 = 4.8 V, V2 ~ V5 = 2.05 V, V7 = 0.5 V后, 把SW2设定为开。此时的I7电流即为 I_{COL} 。

2.2 N沟道开路漏极输出产品

把SW1和SW2设定为关。

2. 2. 1 动态 "H"

(1) CO端子泄漏电流 "L" (Icoll)

在设定V0 = 0 V, V1 = 4.8 V, V2 ~ V5 = 2.05 V, V7 = 28 V后, 把SW2设定为开。此时的I7电流即为 I_{COLL} 。

(2) CO端子吸收电流 (IcoL)

在设定V0 = 0 V, V1 ~ V5 = 2.6 V, V7 = 0.5 V后,把SW2设定为开。此时的I7电流即为IcoL。

2. 2. 2 动态 "L"

(1) CO端子泄漏电流 "L" (Icoll)

在设定V0 = 0 V, V1 ~ V5 = 2.6 V, V7 = 28 V后, 把SW2设定为开。此时的I7电流即为Icoll。

(2) CO端子吸收电流 (IcoL)

在设定V0 = 0 V, V1 = 4.8 V, V2 ~ V5 = 2.05 V, V7 = 0.5 V后, 把SW2设定为开。此时的I7电流即为Icol。

3. 过充电检测延迟时间 (tcu), 过充电解除延迟时间 (tcl) (测定电路1)

在设定V0 = 0 V, $V1 \sim V5 = 2.6 \text{ V}$ 后, 把V1电压提升至4.8 V。至CO端子输出开始反转为止的时间即为 t_{CU} 。此后, 把V1电压降低2.6 V。至CO端子输出开始反转为止的时间即为过充电解除延迟时间 (t_{CL})。

4. 过充电定时复位延迟时间 (t_{TR})

(测定电路1)

在设定V0 = 0 V, V1 ~ V5 = 2.6 V后, 先把V1电压提升至4.8 V (第一次启动上升), 在tcu内再把V1电压降低至2.6 V。然后, 再度将V1电压提升至4.8 V (第二次启动上升), 测定至CO端子输出开始反转为止的时间。

如果从V1电压降低开始到第二次启动上升为止的时间短,CO端子输出会在从第一次启动上升起至tcu以后开始反转。如果逐渐延长此时间,CO端子输出就会在从第二次启动上升起至tcu以后开始反转。从V1电压降低开始到第二次启动上升为止的时间即为trR。

5. 测试模式移动时间 (t_{TST})

(测定电路1)

在设定V0 = 0 V、V1 ~ V5 = 2.6 V后, 先把V0电压提升至4.0 V, 再把V0电压降低为0 V。

从V0电压提升开始到降低为止的时间长时,如果接着使V1 = 4.8 V,则在40 ms以内CO端子输出开始反转。从V0电压提升开始到降低为止的时间短时,如果接着使V1 = 4.8 V,则至CO端子输出开始反转为止的时间将超过40 ms。当CO端子输出开始反转的时间为40 ms以内时,从V0电压提升开始到降低为止的时间的最小值即为t_{TST}。

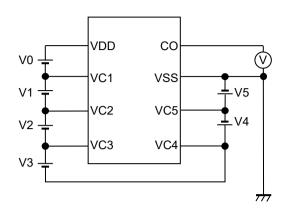


图5 测定电路1

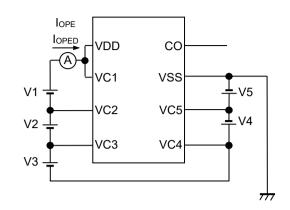


图6 测定电路2

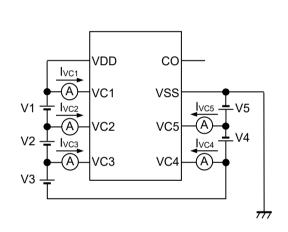


图7 测定电路3

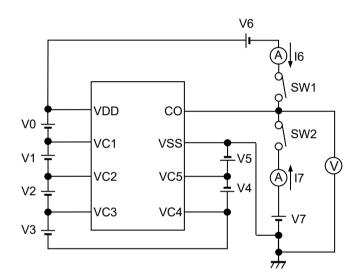


图8 测定电路4

■ 工作说明

备注 请参阅 "■ 电池保护IC的连接例"。

1. 通常状态

所有电池电压未达到过充电解除电压n (V_{CLn}) 时,CO端子的输出为 "L" (动态 "H") 或 "H" (动态 "L")。这种状态称为通常状态。

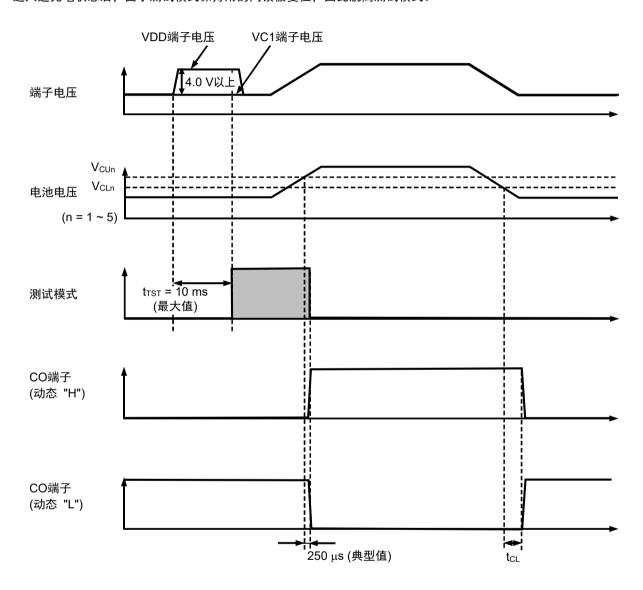
2. 过充电状态

在通常状态下进行充电时,如果任何一个电池电压超过了过充电检测电压n (Vcun),且这种状态持续保持,超过过充电检测延迟时间 (tcu) 时,CO端子的输出开始反转。这种状态称为过充电状态。通过在CO端子处连接FET,就可以进行充电控制以及二次保护。

所有电池电压低于VcLn,且这种状态持续保持在过充电解除延迟时间(tcL)以上时,就会返回通常状态。

3. 过充电定时复位功能

充电中的任何一个电池电压,在从超过Vcun开始至停止充电为止的tcu期间,定时复位功能如下运行。如果暂时有比Vcun低的过充电解除噪声输入时,过充电解除噪声的时间未达到过充电定时复位延迟时间 (tτR) 时,tcu将会继续计时。但是,在同样的状态下,如果过充电解除噪声的时间超过tτR时,tcu会解除计时。当电池电压超过Vcun之后,tcu会重新开始计时。

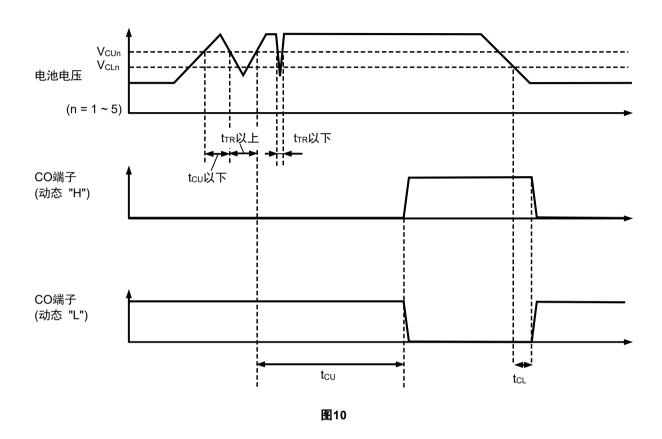

备注 n=1~5

4. 测试模式

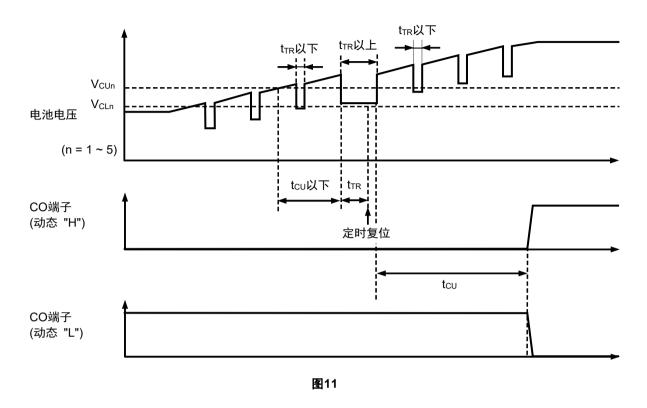
通过测试模式的移动可缩短tcu。

当VDD端子电压比VC1端子电压高出4.0 V以上,且这种状态持续保持,超过测试模式移动时间 (t_{TST}) 时,移动至测试模式。这种状态可利用内部闩锁来保持,即使VDD端子电压恢复为与VC1端子电压相同的电压,也可以继续保持测试模式。

进入过充电状态后,由于测试模式保持用的闩锁被复位,因此脱离测试模式。


注意 1. 要移动至测试模式,必须在所有电池未达到Vcun的条件下进行。

2. 在测试模式时, 过充电定时复位延迟时间 (trr) 不会被缩短。


图9

■ 时序图

1. 过充电检测工作

2. 过充电定时复位工作

■ 电池保护IC的连接例

1. 5节电池串联 (CMOS输出产品)

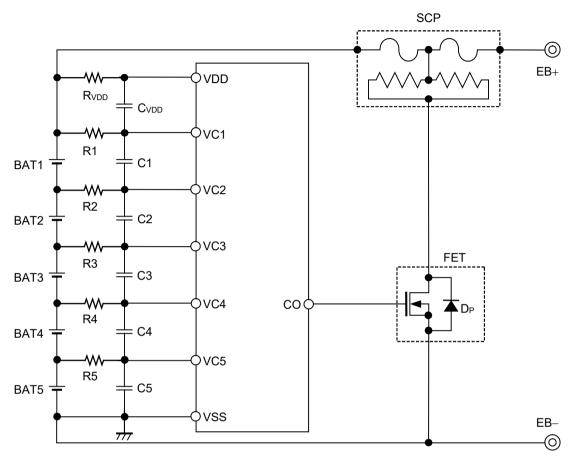


图12

表8 外接元器件参数

No.	符号	最小值	典型值	最大值	单位
1	R1 ~ R5	100	1000	2000	Ω
2	C1 ~ C5, C _{VDD}	0.1	0.1	1	μF
3	R _{VDD}	100	100	2000	Ω

注意 1. 参数有可能不经预告而作更改。

- 2. 未确认连接示例以外的电路工作。连接示例和参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。
- 3. 请将R1~R5设定为相同的参数。请将C1~C5以及CVDD设定为相同的参数。

2. 4节电池串联 (CMOS输出产品)

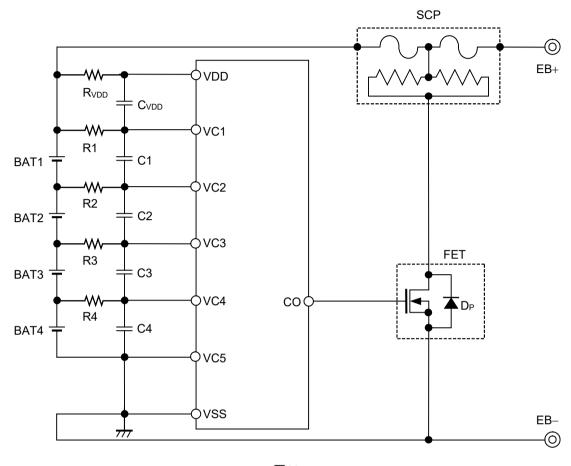


图13

表9 外接元器件参数

No.	符号	最小值	典型值	最大值	单位
1	R1 ~ R4	100	1000	2000	Ω
2	C1 ~ C4, C _{VDD}	0.1	0.1	1	μF
3	R _{VDD}	100	100	2000	Ω

注意 1. 参数有可能不经预告而作更改。

- 2. 未确认连接示例以外的电路工作。连接示例和参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。
- 3. 请将R1~R4设定为相同的参数。请将C1~C4以及CVDD设定为相同的参数。

3. 3节电池串联 (CMOS输出产品)

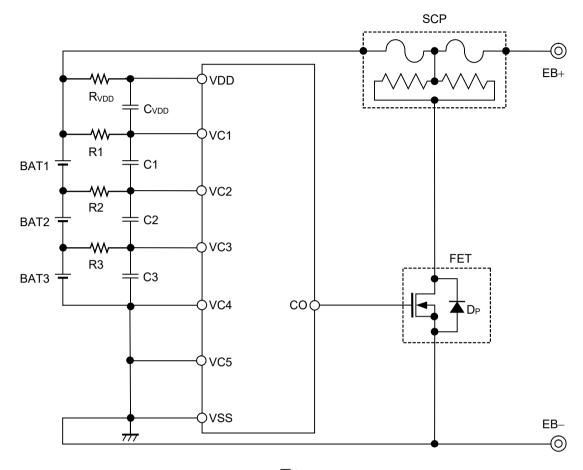


图14

表10 外接元器件参数

No.	符号	最小值	典型值	最大值	单位
1	R1 ~ R3	100	1000	2000	Ω
2	C1 ~ C3, C _{VDD}	0.1	0.1	1	μF
3	R _{VDD}	100	100	2000	Ω

注意 1. 参数有可能不经预告而作更改。

- 2. 未确认连接示例以外的电路工作。连接示例和参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。
- 3. 请将R1~R3设定为相同的参数。请将C1~C3以及CVDD设定为相同的参数。

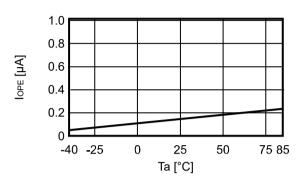
【有关SCP的咨询处】

Dexerials Corporation Tokyo Office

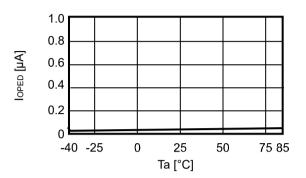
Address: Mitsui Sumitomo Kaijo Tepco Building 9F, 1-6-1

Kyobashi, Chuo-ku, Tokyo, 104-0031, Japan

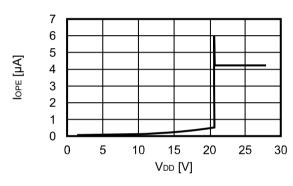
TEL +81-3-3538-1230 (main) http://www.dexerials.jp/en/


■ 注意事项

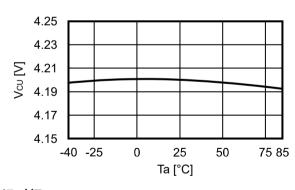
- 请不要连接VcLn以上的电池,即使所连接的电池中只有一个VcLn以上的电压,当连接了所有端子后,本IC可能会产生过充电状态。
- 根据应用电路的不同,即使是在不包含过充电电池的情况下,为了防止电池连接时输出过渡的CO检测脉冲,有可能 限制电池的连接顺序,使用时请进行充分的评价。
- "■ 电池保护IC的连接例" 图中Rvdd及R1的电池侧的端子,请在电池连接前短路。
- 请注意输入输出电压、负载电流的使用条件,以便使IC内部的功耗不超过容许功耗。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格,或因进口国等原因,包含本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。


■ 各种特性数据 (典型数据)

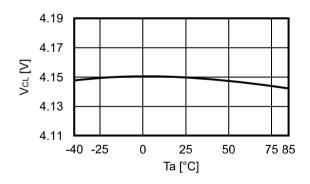
1. 消耗电流


1. 1 IOPE - Ta

1. 2 IOPED - Ta

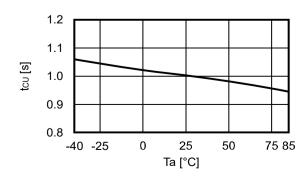


1. 3 $I_{OPE} - V_{DD}$

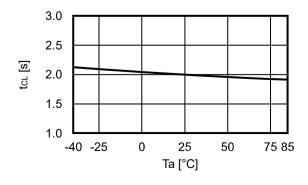


2. 检测电压

2. 1 Vcu - Ta

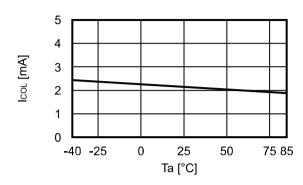


2. 2 V_{CL} - Ta

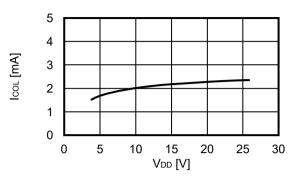


3. 延迟时间

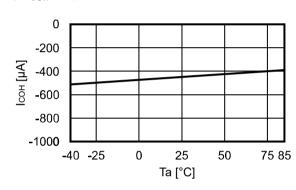
3. 1 tcu - Ta

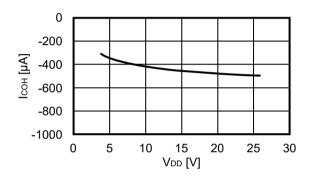


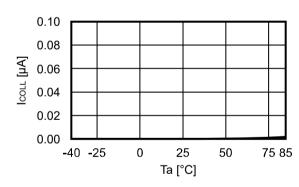
3. 2 tcL - Ta

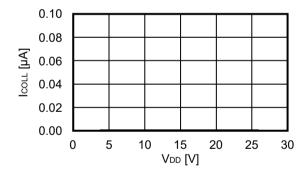


4. 输出电流

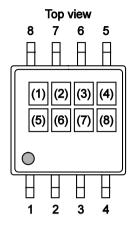

4. 1 Icol – Ta


4. 2 Icol - VDD


4. 3 Ісон – Та


4. 4 Icon - VDD

4. 5 Icoll - Ta

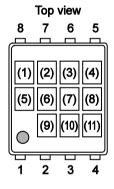


4. 6 Icoll - VDD

■ 标记规格

1. TMSOP-8

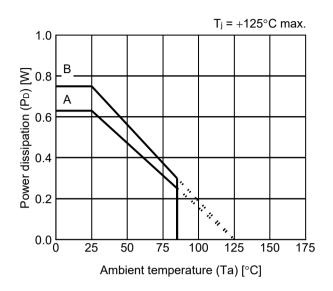
(1): 空白


(2)~(4): 产品简称(请参阅产品名与产品简称的对照表)

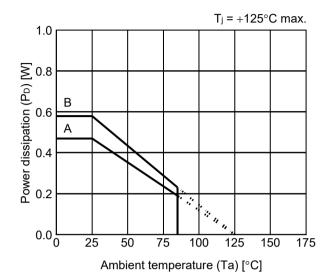
(5): 空白(6)~(8): 批号

产品名与产品简称的对照表

立 □ 夕	产品简称			
产品名	(2) (3) (4		(4)	
S-82P5AAA-K8T2U	9	S	G	


2. SNT-8A

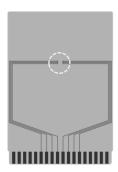
(1): 空白 (2)~(4): 产品简称 (5),(6): 空白


■ Power Dissipation

TMSOP-8

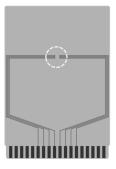
Board	Power Dissipation (P _D)			
Α	0.63 W			
В	0.75 W			
С	_			
D	_			
Е	_			

SNT-8A



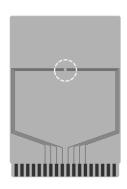
Board	Power Dissipation (P _D)			
А	0.47 W			
В	0.58 W			
С	_			
D	_			
Е	_			

TMSOP-8 Test Board


(1) Board A

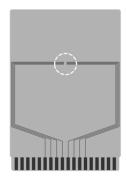
Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil layer		2	
	1	Land pattern and wiring for testing: t0.070	
Copper foil layer [mm]	2	-	
Copper foil layer [mm]	3	-	
	4	74.2 x 74.2 x t0.070	
Thermal via		-	

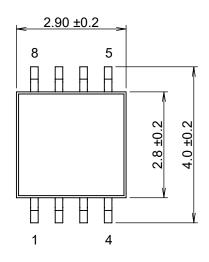
(2) Board B

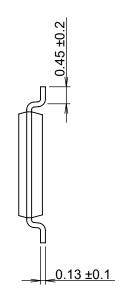

Item		Specification		
Size [mm]		114.3 x 76.2 x t1.6		
Material		FR-4		
Number of copper foil layer		4		
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070		
	2	74.2 x 74.2 x t0.035		
	3	74.2 x 74.2 x t0.035		
	4	74.2 x 74.2 x t0.070		
Thermal via		-		

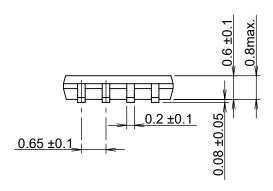
No. TMSOP8-A-Board-SD-1.0

SNT-8A Test Board


(1) Board A

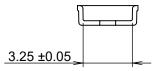

Item		Specification		
Size [mm]		114.3 x 76.2 x t1.6		
Material		FR-4		
Number of copper foil layer 2		2		
Copper foil layer [mm]	1	Land pattern and wiring for testing: t0.070		
	2	-		
	3	-		
	4	74.2 x 74.2 x t0.070		
Thermal via		-		

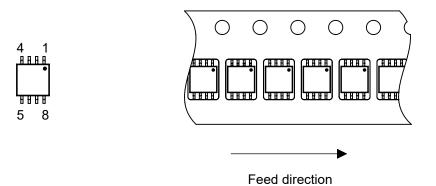

(2) Board B



Item		Specification		
Size [mm]		114.3 x 76.2 x t1.6		
Material		FR-4		
Number of copper foil layer		4		
	1	Land pattern and wiring for testing: t0.070		
Connor foil lover [mm]	2	74.2 x 74.2 x t0.035		
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035		
	4	74.2 x 74.2 x t0.070		
Thermal via		-		

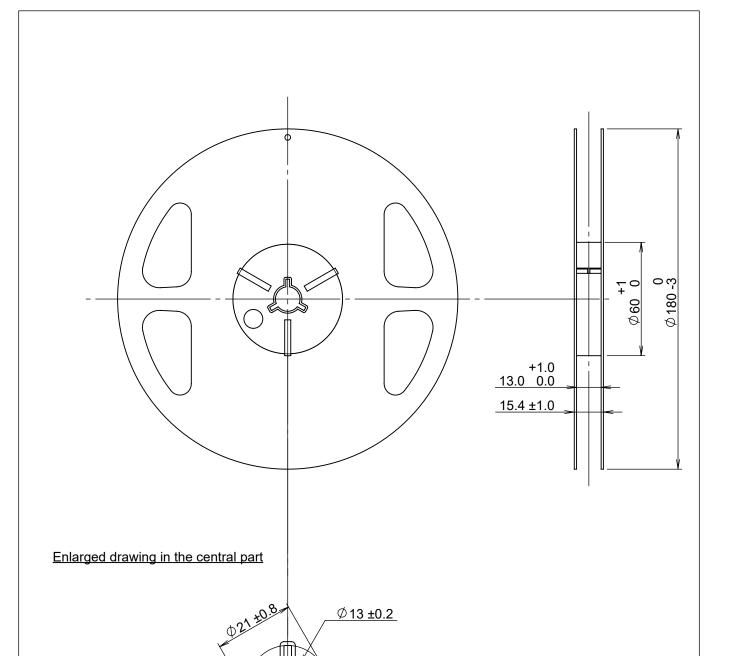
No. SNT8A-A-Board-SD-1.0

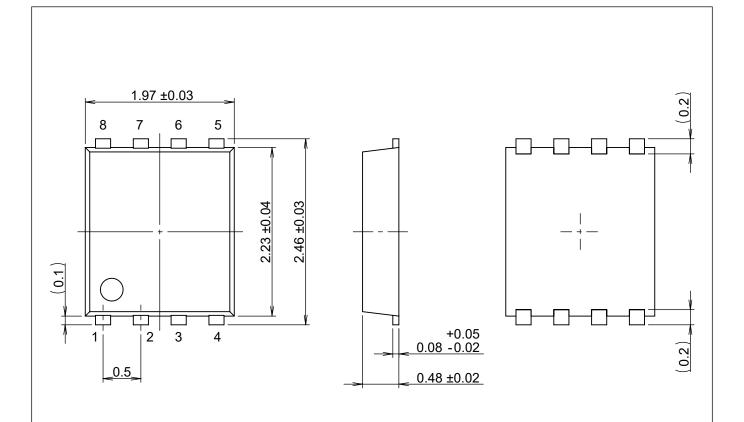


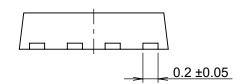


No.FM008-A-P-SD-1.2

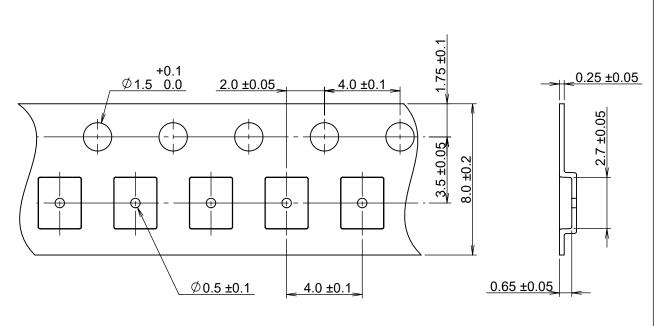
TITLE	TMSOP8-A-PKG Dimensions		
No.	FM008-A-P-SD-1.2		
ANGLE	⊕€∃		
UNIT	mm		
ABLIC Inc.			

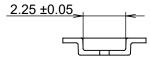


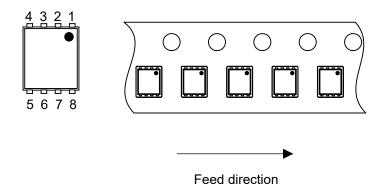

No. FM008-A-C-SD-3.0


TITLE	TMSOP8-A-Carrier Tape		
No.	FM008-A-C-SD-3.0		
ANGLE			
UNIT	mm		
ABLIC Inc.			

No. FM008-A-R-SD-2.0

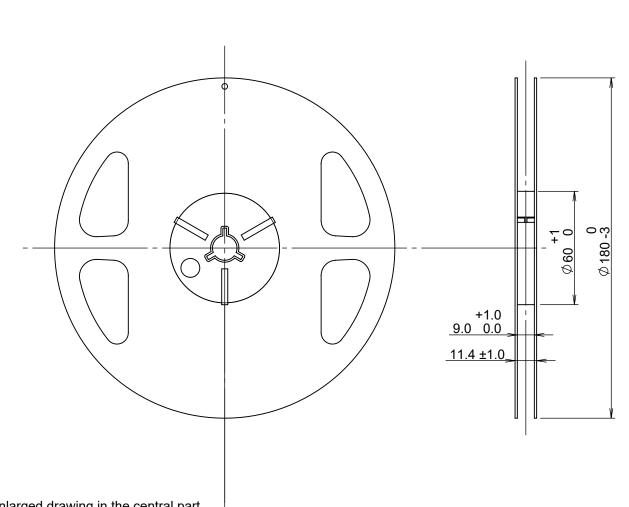

TITLE	TMSOP8-A-Reel				
No.	FM008-A-R-SD-2.0				
ANGLE			QTY.	4,000	
UNIT	mm				
ABLIC Inc.					

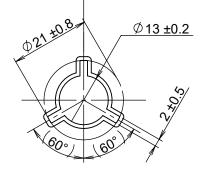




No. PH008-A-P-SD-2.1

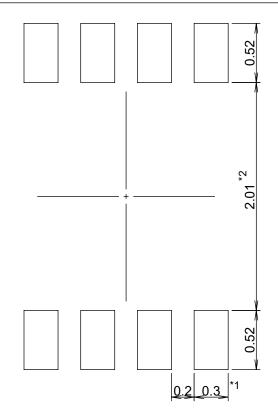
TITLE	SNT-8A-A-PKG Dimensions		
No.	PH008-A-P-SD-2.1		
ANGLE	⊕€∃		
UNIT	mm		
ABLIC Inc.			





No. PH008-A-C-SD-2.0

TITLE	SNT-8A-A-Carrier Tape		
No.	PH008-A-C-SD-2.0		
ANGLE			
UNIT	mm		
ABLIC Inc.			



Enlarged drawing in the central part

No. PH008-A-R-SD-2.0

TITLE	SNT-8A-A-Reel			
No.	PH008-A-R-SD-2.0			
ANGLE			QTY.	5,000
UNIT	mm			-
ABLIC Inc.				

- *1. ランドパターンの幅に注意してください (0.25 mm min. / 0.30 mm typ.)。
- *2. パッケージ中央にランドパターンを広げないでください (1.96 mm ~ 2.06 mm)。
- 注意 1. パッケージのモールド樹脂下にシルク印刷やハンダ印刷などしないでください。
 - 2. パッケージ下の配線上のソルダーレジストなどの厚みをランドパターン表面から0.03 mm以下にしてください。
 - 3. マスク開口サイズと開口位置はランドパターンと合わせてください。
 - 4. 詳細は "SNTパッケージ活用の手引き" を参照してください。
- *1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).
- *2. Do not widen the land pattern to the center of the package (1.96 mm to 2.06 mm).
- Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.
 - 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface.
 - 3. Match the mask aperture size and aperture position with the land pattern.
 - 4. Refer to "SNT Package User's Guide" for details.
- *1. 请注意焊盘模式的宽度 (0.25 mm min. / 0.30 mm typ.)。
- *2. 请勿向封装中间扩展焊盘模式 (1.96 mm ~ 2.06 mm)。
- 注意 1. 请勿在树脂型封装的下面印刷丝网、焊锡。
 - 2. 在封装下、布线上的阻焊膜厚度 (从焊盘模式表面起) 请控制在0.03 mm以下。
 - 3. 钢网的开口尺寸和开口位置请与焊盘模式对齐。
 - 4. 详细内容请参阅 "SNT封装的应用指南"。

No. PH008-A-L-SD-4.1

	TITLE	SNT-8A-A -Land Recommendation
	No.	PH008-A-L-SD-4.1
	ANGLE	
	UNIT	mm
ABLIC Inc.		ABLIC Inc.

免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可能未经预告而更改。
- 2. 本资料记载的电路示例和使用方法仅供参考,并非保证批量生产的设计。使用本资料的信息后,发生并非因本资料记载的产品(以下称本产品)而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承担任何责任。
- 3. 因本资料记载错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本产品并非是设计用于可能对生命、人体造成影响的设备或装置的部件,也非是设计用于可能对财产造成损害的设备或装置的部件(医疗设备、防灾设备、安全防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。请勿将本产品用于上述设备或装置的部件。本公司事先明确标示的车载用途例外。作为上述设备或装置的部件使用本产品时,或本公司事先明确标示的用途以外使用本产品时,所导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。为了防止因本产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。本资料记载的内容并非是对本公司或第三方的知识产权、 其它权利的实施及使用的承诺或保证。严禁在未经本公司许可的情况下转载、复制或向第三方公开本资料的一部分或全 部。
- 14. 有关本资料的详细内容等如有不明之处,请向代理商咨询。
- 15. 本免责事项以日语版为正本。即使有英语版或中文版的翻译件, 仍以日语版的正本为准。

2.4-2019.07

