

S-8265C系列

1

带电量均衡功能的 3节~5节电池串联用电池保护IC (二次保护用)

www.ablic.com

© ABLIC Inc., 2019-2021 Rev.1.5_00

S-8265C系列内置高精度电压检测电路、延迟电路和电量均衡放电用FET的带电量均衡功能的锂离子可充电电池的二次保护用IC。通过电量均衡功能可以有效实现串联电池的电压均衡。通过将各节电池间短路,可适用于3节~5节电池的串联连接。

■ 特点

• 针对各节电池都备有高精度电压检测电路

电量均衡检测电压n (n = 1 ~ 5)

2.700 V ~ 4.650 V (5 mV进阶) 精度±20 mV (Ta = +25°C)

精度±25 mV (Ta = -10°C ~ +60°C)

电量均衡解除电压n (n = 1 ~ 5)*1

2.700 V ~ 4.650 V 精度±50 mV (Ta = +25°C)

过充电检测电压n (n = 1~5)*2

2.750 V ~ 4.700 V (5 mV进阶) 精度±20 mV (Ta = +25°C)

精度±25 mV (Ta = -10°C ~ +60°C)

过充电解除电压n (n = 1 ~ 5)*3,*4

2.750 V ~ 4.700 V 精度±50 mV (Ta = +25°C)

● 针对各节电池都内置有电量均衡放电用FET

● 输出方式: CMOS输出、N沟道开路漏极输出

● 输出逻辑: 动态 "H"、动态 "L"

● 备有通过缩短延迟时间确认电量均衡检测电压、过充电检测电压的测试模式

● 高耐压: 绝对最大额定值28 V

● 工作电压范围广: 3.6 V ~ 26 V

■ 工作温度范围广:Ta = -40°C ~ +85°C

• 消耗电流低

工作时: 0.3 μA (典型值), 0.7 μA (最大值) (Ta = +25°C)

• 无铅 (Sn 100%)、无卤素

- *1. 电量均衡解除电压 = 电量均衡检测电压 + 电量均衡滞后电压 (电量均衡滞后电压为在0 mV ~ -400 mV的范围内以50 mV为进阶单位来选择)
- *2. 请设定过充电检测电压≥电量均衡检测电压 + 50 mV。
- *3. 过充电解除电压 = 过充电检测电压 + 过充电滞后电压 (过充电滞后电压为在0 mV ~ -400 mV的范围内以50 mV为进阶单位来选择)
- *4. 请设定过充电解除电压≥电量均衡解除电压 + 50 mV。

■ 用途

• 锂离子可充电电池

■ 封装

- TMSOP-8
- SNT-8A

■ 框图

1. CMOS输出产品

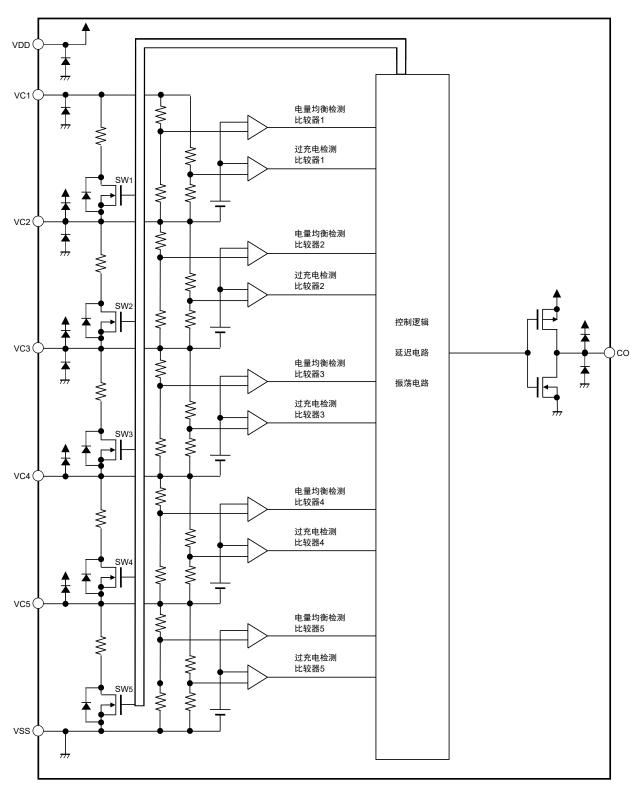


图1

备注 图中所示的二极管为寄生二极管。

2. N沟道开路漏极输出产品

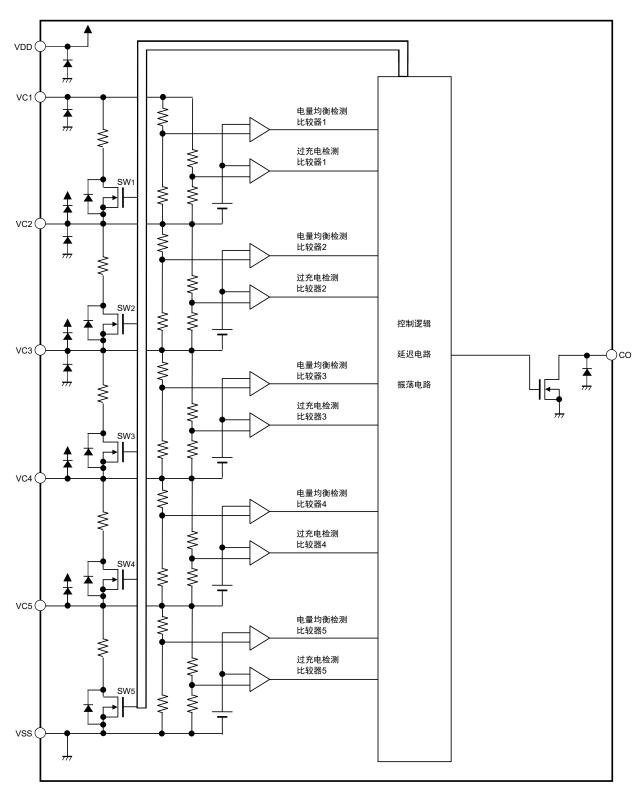
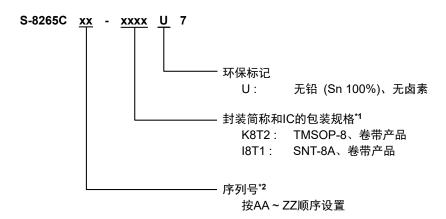



图2

备注 图中所示的二极管为寄生二极管。

■ 产品型号的构成

1. 产品名

- *1. 请参阅卷带图。
- *2. 请参阅 "3. 产品名目录"。

2. 封装

表1 封装图纸号码

封装名	外形尺寸图	卷带图	带卷图	焊盘图
TMSOP-8	FM008-A-P-SD	FM008-A-C-SD	FM008-A-R-SD	_
SNT-8A	PH008-A-P-SD	PH008-A-C-SD	PH008-A-R-SD	PH008-A-L-SD

3. 产品名目录

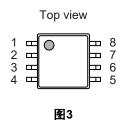
3. 1 TMSOP-8

表2

产品名	电量均衡 检测电压 [V _{BU}]	电量均衡 解除电压 [V _{BL}]	过充电 检测电压 [Vcu]	过充电 解除电压 [VcL]	输出方式	输出逻辑
S-8265CAA-K8T2U7	4.145 V	4.145 V	4.275 V	4.275 V	CMOS输出	动态 "H"
S-8265CAB-K8T2U7	3.900 V	3.850 V	4.130 V	3.880 V	N 沟道开路漏极输出	动态 "L"
S-8265CAC-K8T2U7	4.200 V	4.150 V	4.250 V	4.200 V	N沟道开路漏极输出	动态 "L"

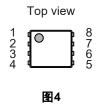
备注 如果需要上述以外的产品时,请向代理商咨询。

3. 2 SNT-8A


表3

产品名	电量均衡 检测电压	电量均衡 解除电压	过充电 检测电压	过充电 解除电压	输出方式	输出逻辑
	[V _{BU}]	[V _{BL}]	[Vcu]	[Vcl]		
S-8265CAA-I8T1U7	4.145 V	4.145 V	4.275 V	4.275 V	CMOS输出	动态 "H"

备注 如果需要上述以外的产品时,请向代理商咨询。


■ 引脚排列图

1. TMSOP-8

表4							
引脚号	符号	描述					
1	VDD	正电源输入端子					
2	VC1	电池1的正电压连接端子					
3	VC2	电池1的负电压连接端子、电池2的正电压连接端子					
4	VC3	电池2的负电压连接端子、电池3的正电压连接端子					
5	VC4	电池3的负电压连接端子、电池4的正电压连接端子					
6	VC5	电池4的负电压连接端子、电池5的正电压连接端子					
7	VSS	负电源输入端子、电池5的负电压连接端子					
8	СО	过充电检测输出端子					

2. SNT-8A

表5

引脚号	符号	描述
1	VDD	正电源输入端子
2	VC1	电池1的正电压连接端子
3	VC2	电池1的负电压连接端子、电池2的正电压连接端子
4	VC3	电池2的负电压连接端子、电池3的正电压连接端子
5	VC4	电池3的负电压连接端子、电池4的正电压连接端子
6	VC5	电池4的负电压连接端子、电池5的正电压连接端子
7	VSS	负电源输入端子、电池5的负电压连接端子
8	СО	过充电检测输出端子

■ 绝对最大额定值

表6

(除特殊注明以外: Ta = +25°C)

项目		符号	适用端子	绝对最大额定值	单位
VDD端子 – VSS端子间输入电压		V _{DS}	VDD	$V_{SS} - 0.3 \sim V_{SS} + 28,$ VC1 - 0.3 ~ VC1 + 5.6	V
			VC1	VC2 - 0.3 ~ VC2 + 5.6	V
	输入端子电压		VC2	VC3 - 0.3 ~ VC3 + 5.6	V
输入端子电压			VC3	VC4 - 0.3 ~ VC4 + 5.6	V
			VC4	VC5 - 0.3 ~ VC5 + 5.6	V
			VC5	$V_{SS} - 0.3 \sim V_{SS} + 5.6$	V
CO端子输出电压	CMOS输出产品	\/	СО	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
CO端了制山屯压	N沟道开路漏极输出产品	V _{co}	CO	$V_{SS} - 0.3 \sim V_{SS} + 28$	V
工作环境温度		T _{opr}	_	−40 ~ +85	°C
保存温度		T _{stg}	_	−40 ~ +125	O°

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性的 损伤。

■ 热敏电阻值

表7

项目	符号	条件	=	最小值	典型值	最大值	单位
			Board A	1	160	-	°C/W
			Board B	ı	133	-	°C/W
		TMSOP-8	Board C	ı	ı	_	°C/W
	θја		Board D	ı	ı	_	°C/W
结至环境热阻* ¹			Board E	-	-	_	°C/W
约至环境然阻。 			Board A	ı	211	_	°C/W
			Board B	ı	173	-	°C/W
		SNT-8A	Board C	ı	ı	-	°C/W
			Board D	ı	ı	-	°C/W
			Board E	-	_	_	°C/W

^{*1.} 测定环境: 遵循JEDEC STANDARD JESD51-2A标准

备注 关于详情,请参阅 "■ Power Dissipation" 和 "Test Board"。

■ 电气特性

表8

(除特殊注明以外: Ta = +25°C)

				(37W/T-137V		1200)
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路
検出電圧							
电量均衡检测电压n		Ta = +25°C	V _{BU} - 0.020	V _{BU}	V _{BU} + 0.020	V	1
(n = 1, 2, 3, 4, 5)	V _{BUn}	Ta = -10° C ~ $+60^{\circ}$ C*1	V _{BU} – 0.025	V _{BU}	V _{BU} + 0.025	٧	1
电量均衡解除电压n (n = 1, 2, 3, 4, 5)	V _{BLn}	-	V _{BL} - 0.050	V _{BL}	V _{BL} + 0.050	V	1
过充电检测电压n	V _{CUn}	Ta = +25°C	V _{CU} - 0.020	Vcu	V _{CU} + 0.020	V	1
(n = 1, 2, 3, 4, 5)	VCOII	$Ta = -10^{\circ}C \sim +60^{\circ}C^{*1}$	V _{CU} - 0.025	Vcu	V _{CU} + 0.025	V	1
过充电解除电压n (n = 1, 2, 3, 4, 5)	V _{CLn}	_	V _{CL} - 0.050	V _{CL}	V _{CL} + 0.050	V	1
输入电压			1		T	1	
VDD端子 – VSS端子间工作电压	V_{DSOP}	_	3.6	_	26	V	_
输入电流							
工作时消耗电流	I _{OPE}	V1 = V2 = V3 = V4 = V5 = V _{BU} × 0.75 V	_	0.3	0.7	μΑ	2
过放电时消耗电流	I _{OPED}	V1 = V2 = V3 = V4 = V5 = V _{BU} × 0.4 V	_	0.05	0.30	μΑ	2
VC1端子输入电流	I _{VC1}	V1 = V2 = V3 = V4 = V5 = V _{BU} × 0.75 V	_	_	0.3	μΑ	3
VCn端子输入电流 (n = 2, 3, 4, 5)	I _{VCn}	V1 = V2 = V3 = V4 = V5 = V _{BU} × 0.75 V	-0.3	0.0	0.3	μΑ	3
输出电流							
CO端子源极电流	Ісон	_	_	_	-20	μΑ	4
CO端子吸收电流	I _{COL}	CMOS输出产品	0.4	_	_	mA	4
CO端子泄漏电流	I _{COLL}	N沟道开路漏极输出产品	_	_	0.1	μΑ	4
延迟时间							
电量均衡检测延迟时间	t _{BU}	_	200	256	310	ms	_
过充电检测延迟时间	t _{CU}	_	200	256	310	ms	_
过充电定时复位延迟时间	t _{TR}	_	6	12	20	ms	_
电量均衡ON时间	t _{CBON}	_	5.7	7.2	8.7	s	_
电量均衡OFF时间	t _{CBOFF}	_	0.8	1.0	1.2	s	_
测试模式移动时间	t _{TST}	_	_	_	10	ms	1
内部电阻			•				
电量均衡放电时端子间电阻1	R _{VC1}	V _{BL} <3.8V	0.15	0.35	0.55	kΩ	5
	13001	V _{BL} ≥3.8V	0.15	0.30	0.45	kΩ	5
电量均衡放电时端子间电阻n	R _{VCn}	V _{BL} <3.8V	0.20	0.35	0.55	kΩ	5
(n = 2, 3, 4, 5)	INVCn	V _{BL} ≥3.8V	0.20	0.30	0.45	kΩ	5

^{*1.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

■ 测定电路

请设定 $V0 = 0 \text{ V}, V1 \sim V5 = 2.6 \text{ V后}$,将电压提升至V0 = 4 V,且这种状态持续保持,超过10 ms以上时,移动至测试模式。

1. 检测电压

(测定电路1)

1.1 电量均衡检测电压n (VBUn)、电量均衡解除电压n (VBLn)

移动至测试模式后,在设定V0 = 4 V, V1 ~ V5 = V_{BU} – 0.05 V后,缓慢提升V1电压,CO端子输出开始反转时V1的电压即为 V_{BU1} 。

然后,恢复V0 = 0 V,在设定 $V1 = V_{BU} + 0.05 \text{ V}$, $V2 \sim V5 = V_{BL} - 0.05 \text{ V}$ 后,缓慢降低V1电压,CO端子输出再次开始反转时V1的电压即为 V_{BL1} 。

其它的VBUn和VBLn (n = 2 ~ 5) 也可采用与n = 1时同样的方法求出。

1. 2 过充电检测电压n (Vcun)、过充电解除电压n (VcLn)

移动至测试模式后,在设定 $V0 = 0 \text{ V}, V1 \sim V5 = V_{CU} - 0.05 \text{ VE},$ 缓慢提升V1电压,CO端子输出开始反转时 V1的电压即为 V_{CU1} 。

然后,恢复V0 = 0 V,在设定 $V1 = V_{CU} + 0.05 \text{ V}$, $V2 \sim V5 = V_{CL} - 0.05 \text{ V}$ 后,缓慢降低V1电压,CO端子输出再次开始反转时V1的电压即为 V_{CL1} 。

其它的Vcun和VcLn (n = 2 ~ 5) 也可采用与n = 1时同样的方法求出。

2. 输出电流

(测定电路4)

2.1 CMOS输出产品

把SW6和SW7设定为关。

2. 1. 1 动态 "H"

(1) CO端子源极电流 (Icon)

移动至测试模式后,在设定 $V0 = 0 \text{ V}, V1 = 4.8 \text{ V}, V2 \sim V5 = 2.05 \text{ V}, V6 = 0.5 \text{ V后, 把SW6设定为开。 此时的I6电流即为I_{COH}。$

(2) CO端子吸收电流 (IcoL)

在设定V0 = 0 V, V1 ~ V5 = 2.6 V, V7 = 0.5 V后, 把SW7设定为开。此时的I7电流即为IcoL。

2. 1. 2 动态 "L"

(1) CO端子源极电流 (Ісон)

在设定 $V0 = 0 \text{ V}, V1 \sim V5 = 2.6 \text{ V}, V6 = 0.5 \text{ V后, 把SW6设定为开。此时的I6电流即为Iсон。}$

(2) CO端子吸收电流 (IcoL)

移动至测试模式后,在设定V0 = 0 V, V1 = 4.8 V, V2 ~ V5 = 2.05 V, V7 = 0.5 V后,把SW7设定为开。此时的I7电流即为IcoL。

Rev.1.5_00

2.2 N沟道开路漏极输出产品

把SW6和SW7设定为关。

2. 2. 1 动态 "H"

(1) CO端子泄漏电流 "L" (Icoll)

移动至测试模式后,在设定 $V0 = 0 \text{ V}, V1 = 4.8 \text{ V}, V2 \sim V5 = 2.05 \text{ V}, V7 = 28 \text{ V后,把SW7设定为开。此时的I7电流即为Icoll。}$

(2) CO端子吸收电流 (IcoL)

在设定V0 = 0 V, V1 ~ V5 = 2.6 V, V7 = 0.5 V后, 把SW7设定为开。此时的I7电流即为IcoL。

2. 2. 2 动态 "L"

(1) CO端子泄漏电流 "L" (Icoll)

在设定V0 = 0 V, V1 ~ V5 = 2.6 V, V7 = 28 V后, 把SW7设定为开。此时的I7电流即为Icoll。

(2) CO端子吸收电流 (IcoL)

移动至测试模式后,在设定 $V0 = 0 \text{ V}, V1 = 4.8 \text{ V}, V2 \sim V5 = 2.05 \text{ V}, V7 = 0.5 \text{ V后, 把SW7设定为开。 此时的I7电流即为IcoL。$

3. 测试模式移动时间 (trst)

(测定电路1)

在设定V0 = 0 V、V1 ~ V5 = 2.6 V后, 先把V0电压提升至4.0 V, 再把V0电压降低为0 V。

从V0电压提升开始到降低为止的时间长时,如果接着使V1=4.8~V,则在40~ms以内CO端子输出开始反转。从V0电压提升开始到降低为止的时间短时,如果接着使V1=4.8~V,则至CO端子输出开始反转为止的时间将超过40~ms。当CO端子输出开始反转的时间为40~ms以内时,从V0电压提升开始到降低为止的时间的最小值即为 t_{TST} 。

4. 电量均衡放电时端子间电阻n (Rvcn)

(測定回路5)

在设定V1 ~ V5 = V_{BL} – 0.05 V后,将电压提升至V1 = V_{BU} + 0.05 V,经过电量均衡检测延迟时间(t_{BU})后再将电压降低至V1 = V_{BL} + 0.05 V。从最初提升V1电压开始经过 t_{BU} + 电量均衡OFF时间(t_{CBOFF})后,开始电量均衡放电。将此时的VI1 / I1作为 R_{VC1} 。其它的 R_{VC1} (n = 2 ~ 5)也可采用与n = 1时同样的方法求出。

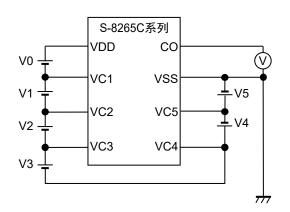


图5 测定电路1

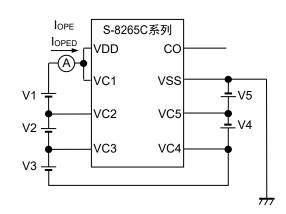


图6 测定电路2

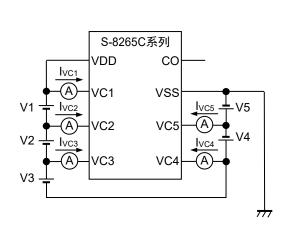


图7 测定电路3

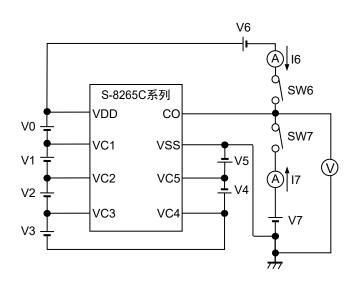


图8 测定电路4

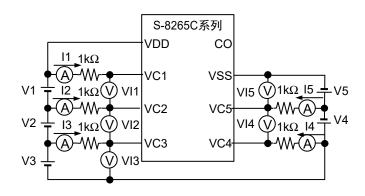
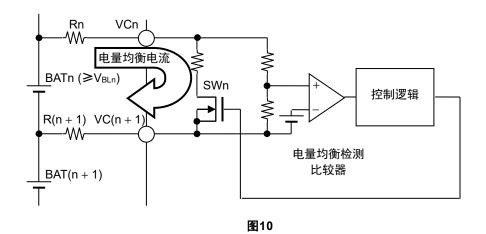


图9 测定电路5

■ 工作说明


备注 请参阅 "■ 电池保护IC的连接例"。

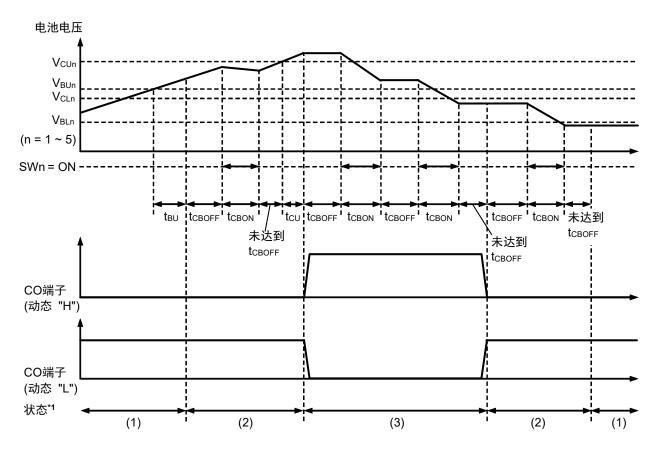
1. 通常状态

所有电池电压未达到电量均衡解除电压n (V_{BLn}) 时,CO端子的输出为 "L" (动态 "H") 或 "H" (动态 "L")。这种状态称为通常状态。

2. 电量均衡状态

在通常状态下,如果任何一个电池电压超过了电量均衡检测电压n(VBUn),且这种状态持续保持,超过电量均衡检测延迟时间(tBU)时,则进入电量均衡状态。在电量均衡状态下,电量均衡OFF时间(tCBOF)和电量均衡ON时间(tCBON)不断反复。在tCBOFF期间,监视VBLn和过充电检测电压(VCUn),并且,所有端子间的电量均衡放电用FET(SWn)均为OFF,不流经电量均衡电流。在tCBOFF期间监视VBLn时,如果所有电池电压都低于VBLn,则恢复通常状态。在tCBON期间,连接了超过VBLn的电池的SWn为ON,流经电量均衡电流,并且,不监视所有电池电压。此外,在电量均衡状态下,所有电池电压超过VBLn时,在tCBON期间所有的SWn变为OFF。

3. 过充电电量均衡状态


在电量均衡状态的 t_{CBOFF} 期间监视 V_{CUn} 时,如果任何一个电池电压超过了 V_{CUn} ,且这种状态持续保持,超过过充电检测延迟时间 (t_{CU}) 时,则CO端子输出反转,进入过充电电量均衡状态。

在电量均衡状态的tcBon期间,即使任何一个电池电压超过Vcun,也将维持电量均衡状态。在之后的tcBoFF期间监视 Vcun时,如果任何一个电池电压超过了Vcun,且这种状态持续保持,超过tcu时,则CO端子输出反转,进入过充电电量均衡状态。

在过充电电量均衡状态下,tcboff和tcbon不断反复。在tcboff期间,监视Vbln和过充电解除电压 (Vcln),并且,所有SWn均为OFF,不流经电量均衡电流。在tcboff期间监视Vcln时,如果所有电池电压都低于Vcln,则CO端子输出反转,恢复电量均衡状态。

在tcBON期间,连接了超过VBLn的电池的SWn为ON,流经电量均衡电流,并且,不监视所有电池电压。此外,在过充电电量均衡状态下,所有电池电压超过VBLn时,在tcBON期间所有的SWn变为OFF。

备注 n = 1 ~ 5

***1.** (1):通常状态

(2): 电量均衡状态

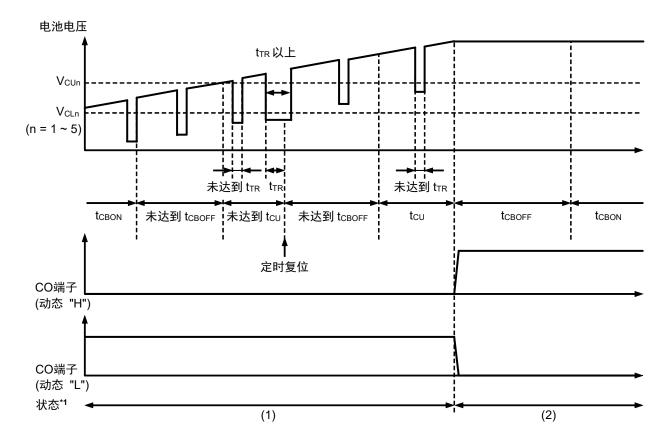

(3): 过充电电量均衡状态

图11

4. 过充电定时复位功能

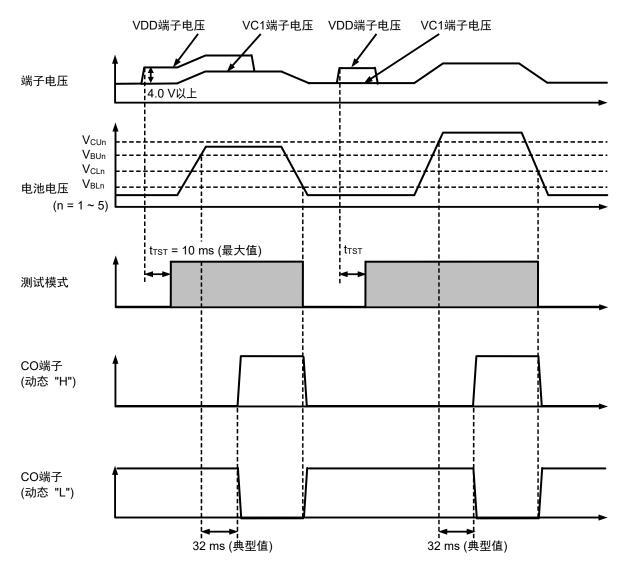
在tcBoff期间监视过充电检测电压时,从任何一个电池电压超过Vcun开始至CO端子输出反转为止的tcu期间,定时复位功能的工作如下所示。

如果暂时有比 V_{CUn} 低的过充电解除噪声输入时, 过充电解除噪声的时间未达到过充电定时复位延迟时间 (t_{TR}) 时, t_{CU} 将会继续计时。但是, 在同样的状态下, 如果过充电解除噪声的时间超过 t_{TR} 时, t_{CU} 会解除计时。解除计时后开始 t_{CBOFF} 。

*1. (1): 电量均衡状态

(2): 过充电电量均衡状态

图12


5. 测试模式

S-8265C系列通过测试模式的移动,可以在短时间内确认电量均衡检测电压 (V_{BUn}) 和过充电检测电压 (V_{CUn})。 当VDD端子电压比VC1端子电压高出4.0 V以上,且这种状态持续保持,超过10 ms以上时,移动至测试模式。可利 用测试模式保持用闩锁来保持这种状态,即使VDD端子电压再次恢复为与VC1端子电压相同的电压,也可以持续保 持测试模式。

在测试模式期间,当VDD端子电压比VC1端子电压高出4.0 V以上,且这种状态持续保持,如果电池电压超过VBUn,则CO端子输出反转,进入电量均衡检测状态。将VDD端子电压恢复为与VC1端子电压相同的电压之后,如果电池电压低于VBLn,则CO端子输出再次反转,进入电量均衡解除状态。CO端子输出从检测状态变为解除状态时,测试模式保持用闩锁将被复位,并离开测试模式。在VDD端子电压恢复为与VC1端子电压相同的电压之前,请注意避免电池电压低于VBLn。

此外,当VDD端子电压比VC1端子电压高出4.0 V以上,移动至测试模式之后,将VDD端子电压恢复为与VC1端子电压相同的电压,如果电池电压超过Vcun,则CO端子输出反转,进入过充电检测状态。然后,如果电池电压低于Vcln,则CO端子输出再次反转,进入过充电解除状态。CO端子输出从检测状态进入解除状态时,测试模式保持用闩锁将被复位,并离开测试模式。

此外, 在测试模式期间, 不流经电量均衡电流。

注意 1. 要移动至测试模式,必须在所有电池未达到VBUn的条件下进行。

2. 在测试模式期间,过充电定时复位延迟时间(trR)不会被缩短。

■ 电池保护IC的连接例

1. 5节电池串联 (CMOS输出产品)

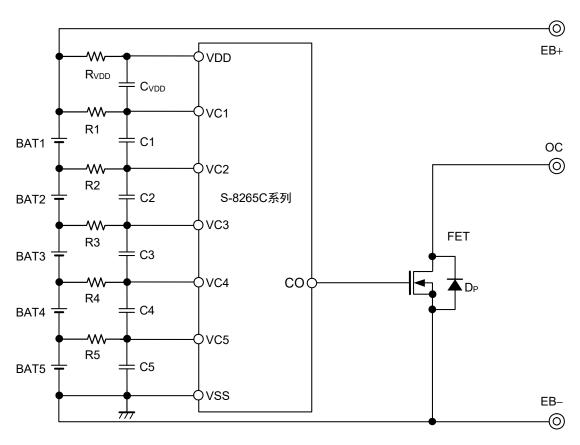


图14

表9 外接元器件参数

No.	符号	最小值	典型值	最大值	单位
1	R1 ~ R5	100	100	1000	Ω
2	C1 ~ C5, C _{VDD}	0.1	0.1	0.1	μF
3	R _{VDD}	100	100	1000	Ω

注意 1. 参数有可能不经预告而作更改。

- 2. 未确认连接示例以外的电路工作。连接示例和参数并不作为保证电路工作的依据。请在实际的应用电路上进 行充分的实测后再设定参数。
- 3. 请将R1~R5设定为相同的参数。请将C1~C5以及CVDD设定为相同的参数。
- 4. 因关系到电量均衡电流,请设定适当的R1~R5值,使IC的功耗不超过容许功耗。

2. 4节电池串联 (CMOS输出产品)

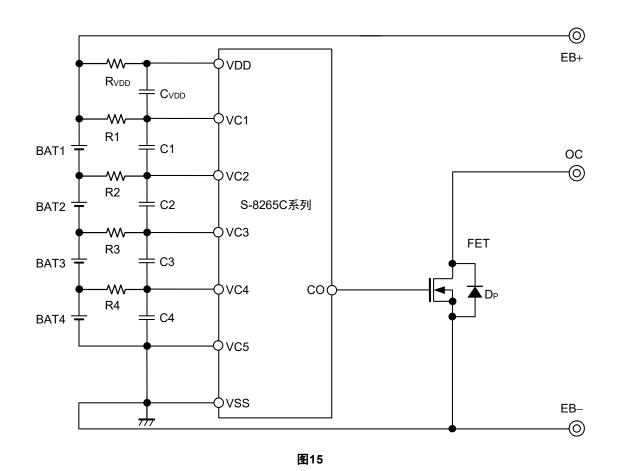


表10 外接元器件参数

典型值 单位 符号 最大值 No. 最小值 1000 1 R1 ~ R4 100 100 Ω μF 2 C1 ~ C4, C_{VDD} 0.1 0.1 0.1 R_{VDD} 100 100 1000 Ω

注意 1. 参数有可能不经预告而作更改。

- 2. 未确认连接示例以外的电路工作。连接示例和参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。
- 3. 请将R1~R4设定为相同的参数。请将C1~C4以及CVDD设定为相同的参数。
- 4. 因关系到电量均衡电流,请设定适当的R1~R4值,使IC的功耗不超过容许功耗。

3. 3节电池串联 (CMOS输出产品)

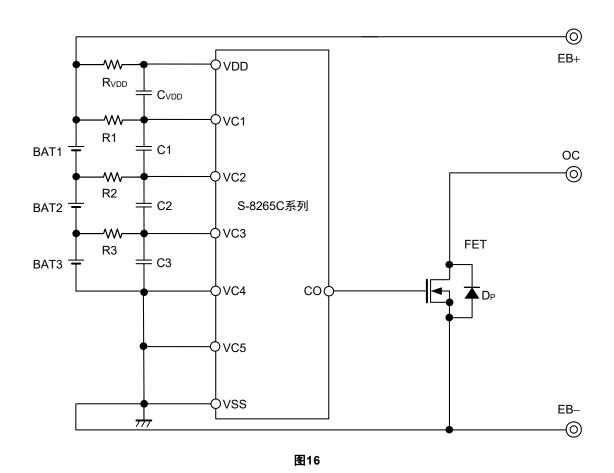
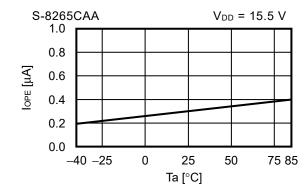


表11 外接元器件参数

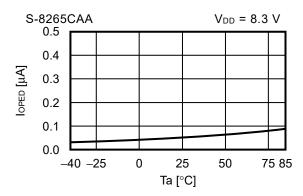
No.	符号	最小值	典型值	最大值	单位
1	R1 ~ R3	100	100	1000	Ω
2	C1 ~ C3, C _{VDD}	0.1	0.1	0.1	μF
3	R _{VDD}	100	100	1000	Ω

注意 1. 参数有可能不经预告而作更改。

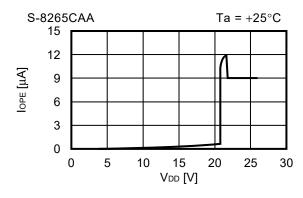
- 2. 未确认连接示例以外的电路工作。连接示例和参数并不作为保证电路工作的依据。请在实际的应用电路上进 行充分的实测后再设定参数。
- 3. 请将R1~R3设定为相同的参数。请将C1~C3以及CVDD设定为相同的参数。
- 4. 因关系到电量均衡电流,请设定适当的R1~R3值,使IC的功耗不超过容许功耗。


■ 注意事项

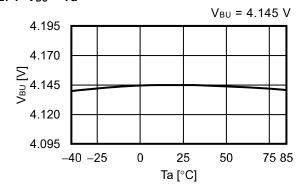
- 请不要连接V_{CLn}以上的电池,即使所连接的电池中只有一个V_{CLn}以上的电压,当连接了所有端子后,S-8265C系列可能会产生过充电状态。
- 根据应用电路的不同,即使是在不包含过充电电池的情况下,为了防止电池连接时输出过渡的CO检测脉冲,有可能 限制电池的连接顺序,使用时请进行充分的评价。
- "■ 电池保护IC的连接例" 图中Rvdd及R1的电池侧的端子,请在电池连接前短路。
- 请注意输入输出电压、负载电流的使用条件,以便使IC内部的功耗不超过容许功耗。
- 本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- 使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格,或因进口国等原因,包含本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。


■ 各种特性数据 (典型数据)

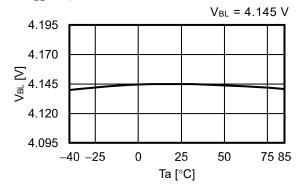
1. 消耗电流


1. 1 IOPE - Ta

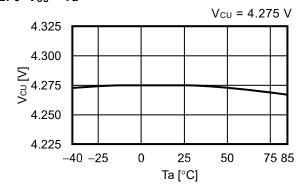
1. 2 IOPED - Ta

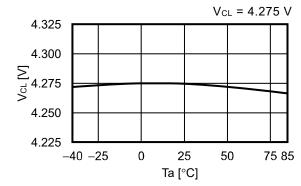


1. 3 IOPE - VDD

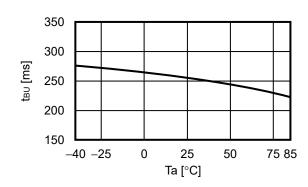


2. 检测电压

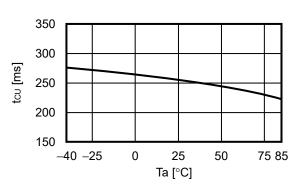

2. 1 V_{BU} – Ta


2. 2 V_{BL} – Ta

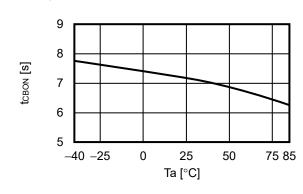
2. 3 V_{CU} - Ta

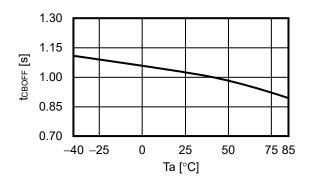


2. 4 V_{CL} – Ta

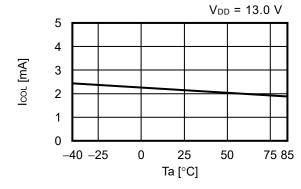


3. 延迟时间

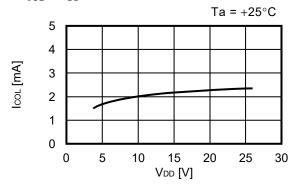

3. 1 $t_{BU} - Ta$


3. 2 tcu - Ta

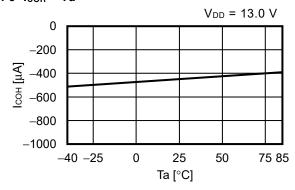
3. 3 t_{CBON} - Ta

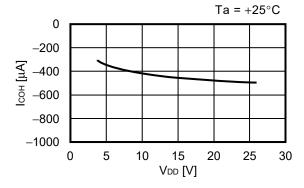


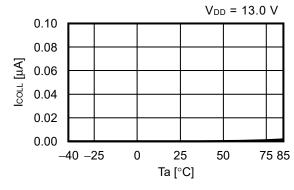
3. 4 t_{CBOFF} - Ta

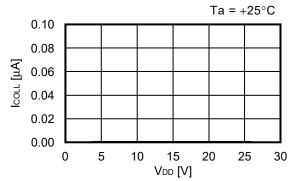


4. 输出电流

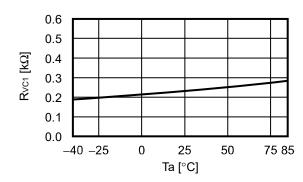

4. 1 IcoL - Ta


4. 2 Icol - VDD

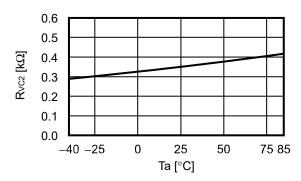

4. 3 I_{COH} – Ta


4. 4 I_{COH} - V_{DD}

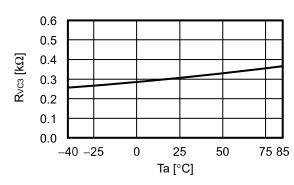
4. 5 Icoll - Ta

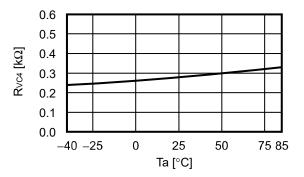


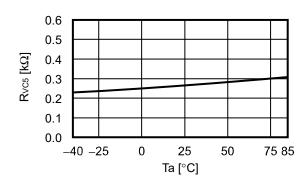
4. 6 Icoll - VDD



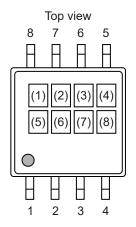
5. 内部电阻


5. 1 R_{VC1} - Ta


5. 2 R_{VC2} - Ta


5. 3 Rvc3 - Ta

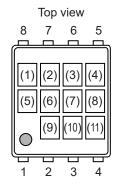
5. 4 R_{VC4} - Ta



■ 标记规格

1. TMSOP-8

(1): 空白


(2)~(4): 产品简称 (请参阅产品名与产品简称的对照表)

(5): 空白(6)~(8): 批号

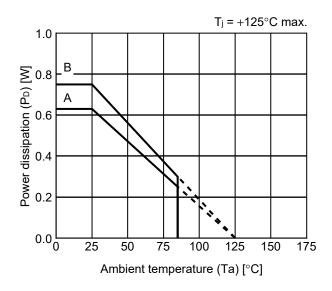
产品名与产品简称的对照表

产品名	产品简称			
厂吅石	(2)	(3)	(4)	
S-8265CAA-K8T2U7	8	J	Α	
S-8265CAB-K8T2U7	8	J	В	
S-8265CAC-K8T2U7	8	J	С	

2. SNT-8A

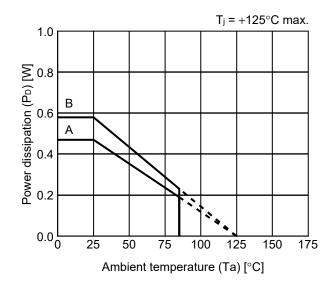
(1): 空白

(2)~(4): 产品简称 (请参阅产品名与产品简称的对照表)


(5), (6): 空白 (7)~(11): 批号

产品名与产品简称的对照表

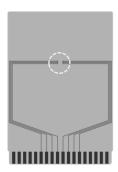
立 □ <i>反</i>	产品简称				
广帕石	(2)	(3)	(4)		
S-8265CAA-I8T1U7	8	J	Α		


■ Power Dissipation

TMSOP-8

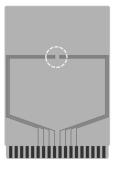
Board	Power Dissipation (P _D)		
Α	0.63 W		
В	0.75 W		
С	_		
D	_		
Е	_		

SNT-8A



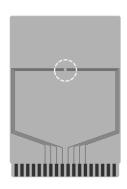
Board	Power Dissipation (P _D)
А	0.47 W
В	0.58 W
С	_
D	_
E	_

TMSOP-8 Test Board


(1) Board A

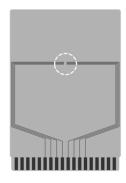
Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil layer 2		2	
	1	Land pattern and wiring for testing: t0.070	
Copper foil layer [mm]	2	-	
Copper foil layer [mm]	3	-	
	4	74.2 x 74.2 x t0.070	
Thermal via		-	

(2) Board B

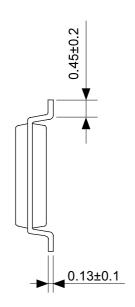

Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil layer		4	
	1	Land pattern and wiring for testing: t0.070	
Connor foil lover [mm]	2	74.2 x 74.2 x t0.035	
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035	
	4	74.2 x 74.2 x t0.070	
Thermal via		-	

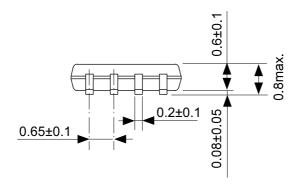
No. TMSOP8-A-Board-SD-1.0

SNT-8A Test Board


(1) Board A

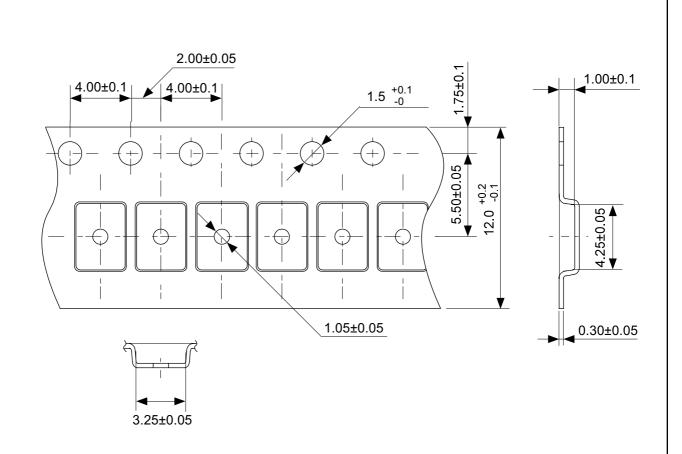
Item		Specification	
Size [mm]		114.3 x 76.2 x t1.6	
Material		FR-4	
Number of copper foil la	Number of copper foil layer 2		
	1	Land pattern and wiring for testing: t0.070	
Copper foil layer [mm]	2	-	
Copper foil layer [mm]	3	-	
	4	74.2 x 74.2 x t0.070	
Thermal via		-	

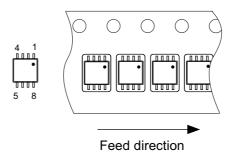

(2) Board B



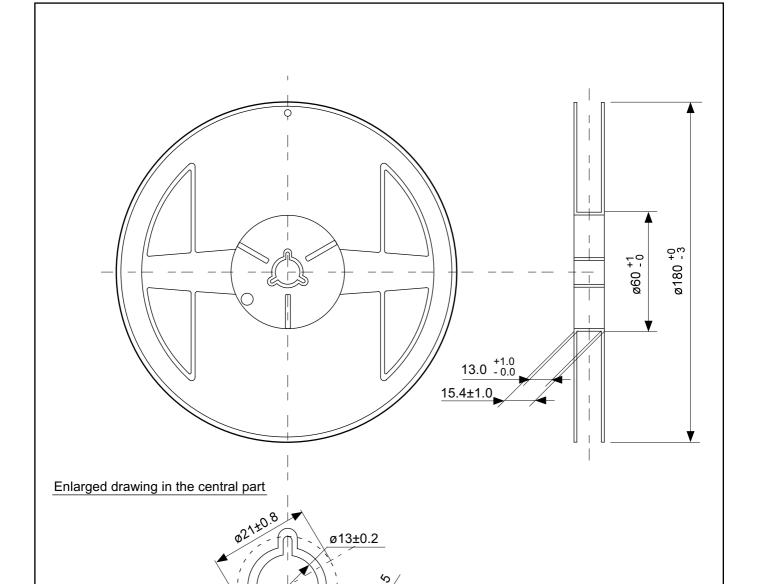
Item		Specification
Size [mm]		114.3 x 76.2 x t1.6
Material		FR-4
Number of copper foil layer		4
	1	Land pattern and wiring for testing: t0.070
Connor foil lover [mm]	2	74.2 x 74.2 x t0.035
Copper foil layer [mm]	3	74.2 x 74.2 x t0.035
	4	74.2 x 74.2 x t0.070
Thermal via		-

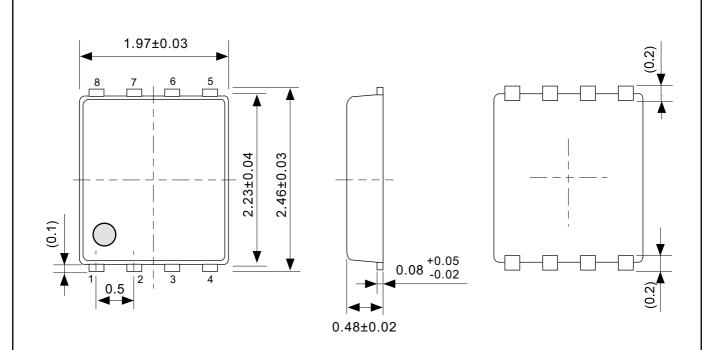
No. SNT8A-A-Board-SD-1.0

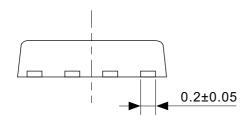




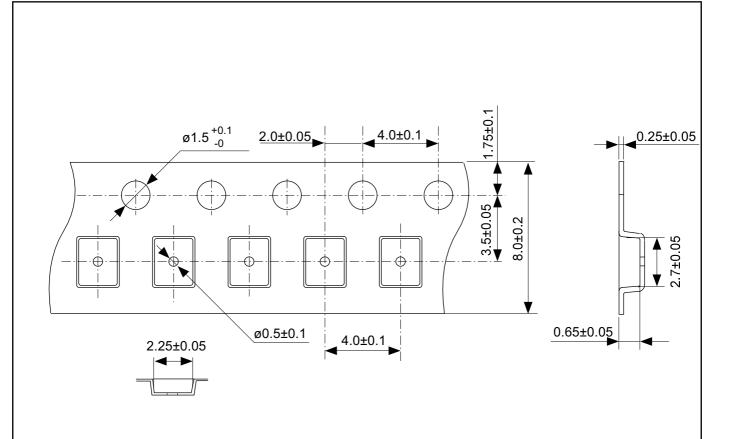
No. FM008-A-P-SD-1.2

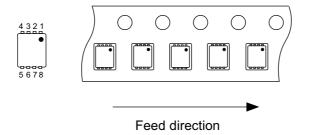

TITLE	TMSOP8-A-PKG Dimensions		
No.	FM008-A-P-SD-1.2		
ANGLE	\$		
UNIT	mm		
ABLIC Inc.			


No. FM008-A-C-SD-2.0

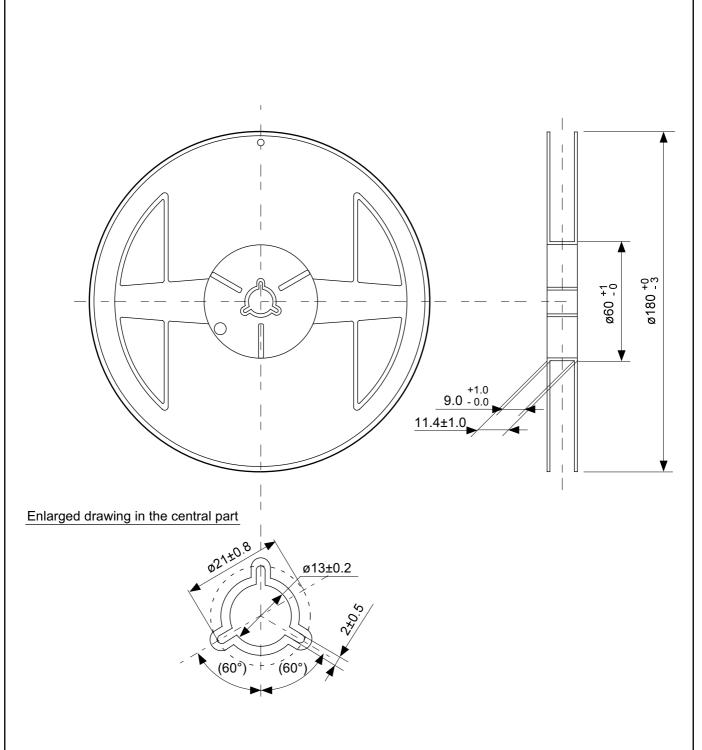

TITLE	TMSOP8-A-Carrier Tape		
No.	FM008-A-C-SD-2.0		
ANGLE			
UNIT	mm		
ABLIC Inc.			

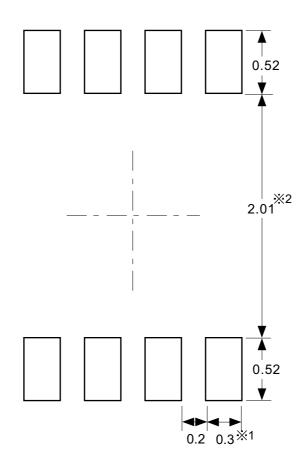
No. FM008-A-R-SD-2.0


TITLE	TMSOP8-A-Reel			
No.	FM008	B-A-R-SD)-2.0	
ANGLE	QTY. 4,000			
UNIT	mm			
ABLIC Inc.				



No. PH008-A-P-SD-2.1


TITLE	SNT-8A-A-PKG Dimensions		
No.	PH008-A-P-SD-2.1		
ANGLE	\$		
UNIT	mm		
ABLIC Inc.			


No. PH008-A-C-SD-2.0

TITLE	SNT-8A-A-Carrier Tape		
No.	PH008-A-C-SD-2.0		
ANGLE			
UNIT	mm		
ABLIC Inc.			

No. PH008-A-R-SD-2.0

TITLE	SNT-8A-A-Reel			
No.	PH008	B-A-R-SD-	-2.0	
ANGLE	QTY. 5,000			
UNIT	mm			
ABLIC Inc.				

- ※1. ランドパターンの幅に注意してください (0.25 mm min. / 0.30 mm typ.)。 ※2. パッケージ中央にランドパターンを広げないでください (1.96 mm ~ 2.06 mm)。
- 注意 1. パッケージのモールド樹脂下にシルク印刷やハンダ印刷などしないでください。
 - 2. パッケージ下の配線上のソルダーレジストなどの厚みをランドパターン表面から0.03 mm 以下にしてください。
 - 3. マスク開口サイズと開口位置はランドパターンと合わせてください。
 - 4. 詳細は "SNTパッケージ活用の手引き"を参照してください。
- X1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).
- *2. Do not widen the land pattern to the center of the package (1.96 mm to 2.06mm).
- Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.
 - 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface.
 - 3. Match the mask aperture size and aperture position with the land pattern.
 - 4. Refer to "SNT Package User's Guide" for details.
- ※1. 请注意焊盘模式的宽度 (0.25 mm min. / 0.30 mm typ.)。
- ※2. 请勿向封装中间扩展焊盘模式 (1.96 mm~2.06 mm)。
- 注意 1. 请勿在树脂型封装的下面印刷丝网、焊锡。
 - 2. 在封装下、布线上的阻焊膜厚度 (从焊盘模式表面起) 请控制在 0.03 mm 以下。
 - 3. 钢网的开口尺寸和开口位置请与焊盘模式对齐。
 - 4. 详细内容请参阅 "SNT 封装的应用指南"。

No. PH008-A-L-SD-4.1

TITLE	SNT-8A-A -Land Recommendation
No.	PH008-A-L-SD-4.1
ANGLE	
UNIT	mm
ABLIC Inc.	

免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可能未经预告而更改。
- 2. 本资料记载的电路示例和使用方法仅供参考,并非保证批量生产的设计。使用本资料的信息后,发生并非因本资料记载的产品(以下称本产品)而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承担任何责任。
- 3. 因本资料记载错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本产品并非是设计用于可能对生命、人体造成影响的设备或装置的部件,也非是设计用于可能对财产造成损害的设备或装置的部件(医疗设备、防灾设备、安全防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。请勿将本产品用于上述设备或装置的部件。本公司事先明确标示的车载用途例外。作为上述设备或装置的部件使用本产品时,或本公司事先明确标示的用途以外使用本产品时,所导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。为了防止因本产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。本资料记载的内容并非是对本公司或第三方的知识产权、 其它权利的实施及使用的承诺或保证。严禁在未经本公司许可的情况下转载、复制或向第三方公开本资料的一部分或全 部。
- 14. 有关本资料的详细内容等如有不明之处,请向代理商咨询。
- 15. 本免责事项以日语版为正本。即使有英语版或中文版的翻译件, 仍以日语版的正本为准。

2.4-2019.07

